These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 12757386)

  • 21. DNA duplexes and triplex-forming oligodeoxynucleotides incorporating modified nucleosides forming stable and selective triplexes.
    Kanamori T; Masaki Y; Mizuta M; Tsunoda H; Ohkubo A; Sekine M; Seio K
    Org Biomol Chem; 2012 Feb; 10(5):1007-13. PubMed ID: 22146807
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modification of the aromatic ring of the WNA analogues for expansion of the triplex recognition codes.
    Taniguchi Y; Nakamura A; Aoki E; Sasaki S
    Nucleic Acids Symp Ser (Oxf); 2005; (49):173-4. PubMed ID: 17150689
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of the modified aromatic ring of WNA on stability of triplex DNA.
    Aoki E; Taniguchi Y; Togo M; Sasaki S
    Nucleic Acids Symp Ser (Oxf); 2006; (50):185-6. PubMed ID: 17150879
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficient DNA strand displacement by a W-shaped nucleoside analogue (WNA-βT) containing an ortho-methyl-substituted phenyl ring.
    Aoki E; Taniguchi Y; Wada Y; Sasaki S
    Chembiochem; 2012 May; 13(8):1152-60. PubMed ID: 22549913
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Triplex formation by psoralen-conjugated chimeric oligonucleoside methylphosphonates.
    Cassidy RA; Kondo NS; Miller PS
    Biochemistry; 2000 Jul; 39(29):8683-91. PubMed ID: 10913277
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The high stability of the triple helices formed between short purine oligonucleotides and SIV/HIV-2 vpx genes is determined by the targeted DNA structure.
    Svinarchuk F; Monnot M; Merle A; Malvy C; Fermandjian S
    Nucleic Acids Res; 1995 Oct; 23(19):3831-6. PubMed ID: 7479024
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cross-linking to an interrupted polypurine sequence with a platinum-modified triplex-forming oligonucleotide.
    Campbell MA; Miller PS
    J Biol Inorg Chem; 2009 Aug; 14(6):873-81. PubMed ID: 19350290
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nucleosides and nucleotides. 208. Alternate-strand triple-helix formation by the 3'-3'-linked oligodeoxynucleotides with the anthraquinonyl group at the junction point.
    Ueno Y; Mikawa M; Hoshika S; Matsuda A
    Bioconjug Chem; 2001; 12(4):635-42. PubMed ID: 11459470
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Investigation of the formation and intracellular stability of purine.(purine/pyrimidine) triplexes.
    Debin A; Malvy C; Svinarchuk F
    Nucleic Acids Res; 1997 May; 25(10):1965-74. PubMed ID: 9115364
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The development of bioactive triple helix-forming oligonucleotides.
    Seidman MM; Puri N; Majumdar A; Cuenoud B; Miller PS; Alam R
    Ann N Y Acad Sci; 2005 Nov; 1058():119-27. PubMed ID: 16394131
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Promotion of duplex and triplex DNA formation by polycation comb-type copolymers.
    Torigoe H; Maruyama A
    Methods Mol Med; 2001; 65():209-24. PubMed ID: 21318757
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DNA triple-helix formation at pyrimidine-purine inversion sites.
    Parel SP; Marfurt J; Leumann CJ
    Nucleosides Nucleotides Nucleic Acids; 2001; 20(4-7):411-7. PubMed ID: 11563056
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Triple helix formation and homologous strand exchange in pyrene-labeled oligonucleotides.
    Mohammadi S; Slama-Schwok A; Léger G; el Manouni D; Shchyolkina A; Leroux Y; Taillandier E
    Biochemistry; 1997 Dec; 36(48):14836-44. PubMed ID: 9398205
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DNA triple helix formation at target sites containing several pyrimidine interruptions: stabilization by protonated cytosine or 5-(1-propargylamino)dU.
    Gowers DM; Bijapur J; Brown T; Fox KR
    Biochemistry; 1999 Oct; 38(41):13747-58. PubMed ID: 10521282
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Triple helix formation with Drosophila satellite repeats. Unexpected stabilization by copper ions.
    Horn V; Lacroix L; Gautier T; Takasugi M; Mergny JL; Lacoste J
    Biochemistry; 2004 Sep; 43(35):11196-205. PubMed ID: 15366929
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Triple helix-directed psoralen crosslinks are recognized by Uvr(A)BC excinuclease.
    Duval-Valentin G; Takasugi M; Hélène C; Sage E
    J Mol Biol; 1998 May; 278(4):815-25. PubMed ID: 9614944
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Triple helix structures: sequence dependence, flexibility and mismatch effects.
    Sun JS; Mergny JL; Lavery R; Montenay-Garestier T; Hélène C
    J Biomol Struct Dyn; 1991 Dec; 9(3):411-24. PubMed ID: 1815635
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Single stand targeted triplex formation: physicochemical and biochemical properties of foldback triplexes.
    Kandimalla ER; Manning A; Agrawal S
    J Biomol Struct Dyn; 1996 Aug; 14(1):79-90. PubMed ID: 8877564
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improved synthesis of daunomycin conjugates with triplex-forming oligonucleotides. The polypurine tract of HIV-1 as a target.
    Capobianco ML; De Champdoré M; Arcamone F; Garbesi A; Guianvarc'h D; B Arimondo P
    Bioorg Med Chem; 2005 May; 13(9):3209-18. PubMed ID: 15809156
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis and evaluation of oligonucleotides incorporating novel artificial nucleobases for the selective formation of non-natural type triplexes.
    Nakashima S; Matsuura N; Nagatsugi F; Maeda M; Sasaki S
    Nucleic Acids Symp Ser; 1997; (37):33-4. PubMed ID: 9585985
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.