These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 12757803)

  • 1. Analysis of creep strain during tensile fatigue of cortical bone.
    Cotton JR; Zioupos P; Winwood K; Taylor M
    J Biomech; 2003 Jul; 36(7):943-9. PubMed ID: 12757803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Damage rate is a predictor of fatigue life and creep strain rate in tensile fatigue of human cortical bone samples.
    Cotton JR; Winwood K; Zioupos P; Taylor M
    J Biomech Eng; 2005 Apr; 127(2):213-9. PubMed ID: 15971698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Creep does not contribute to fatigue in bovine trabecular bone.
    Moore TL; O'Brien FJ; Gibson LJ
    J Biomech Eng; 2004 Jun; 126(3):321-9. PubMed ID: 15341168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bone creep-fatigue damage accumulation.
    Caler WE; Carter DR
    J Biomech; 1989; 22(6-7):625-35. PubMed ID: 2808445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of stress ratio on the fatigue behaviour of compact bone.
    Ota M; Ishihara S; Fleck C; Goshima T; Eifler D
    Proc Inst Mech Eng H; 2005; 219(1):13-22. PubMed ID: 15777053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near-terminal creep damage does not substantially influence fatigue life under physiological loading.
    Stern LC; Brinkman JG; Furmanski J; Rimnac CM; Hernandez CJ
    J Biomech; 2011 Jul; 44(10):1995-8. PubMed ID: 21592481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-dependent circumferential deformation of cortical bone upon internal radial loading.
    Brown CU; Norman TL; Kish VL; Gruen TA; Blaha JD
    J Biomech Eng; 2002 Aug; 124(4):456-61. PubMed ID: 12188212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of crack growth in a 3D Voronoi structure: a model for fatigue in low density trabecular bone.
    Makiyama AM; Vajjhala S; Gibson LJ
    J Biomech Eng; 2002 Oct; 124(5):512-20. PubMed ID: 12405593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation of creep in non-homogenous samples of human cortical bone.
    Ertas AH; Winwood K; Zioupos P; Cotton JR
    Comput Methods Biomech Biomed Engin; 2012; 15(10):1121-8. PubMed ID: 21574078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cyclic mechanical property degradation during fatigue loading of cortical bone.
    Pattin CA; Caler WE; Carter DR
    J Biomech; 1996 Jan; 29(1):69-79. PubMed ID: 8839019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cycle-dependent and time-dependent bone fracture with repeated loading.
    Carter DR; Caler WE
    J Biomech Eng; 1983 May; 105(2):166-70. PubMed ID: 6865359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite element modeling of damage accumulation in trabecular bone under cyclic loading.
    Guo XE; McMahon TA; Keaveny TM; Hayes WC; Gibson LJ
    J Biomech; 1994 Feb; 27(2):145-55. PubMed ID: 8132682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Do microcracks decrease or increase fatigue resistance in cortical bone?
    Sobelman OS; Gibeling JC; Stover SM; Hazelwood SJ; Yeh OC; Shelton DR; Martin RB
    J Biomech; 2004 Sep; 37(9):1295-303. PubMed ID: 15275836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Creep contributes to the fatigue behavior of bovine trabecular bone.
    Bowman SM; Guo XE; Cheng DW; Keaveny TM; Gibson LJ; Hayes WC; McMahon TA
    J Biomech Eng; 1998 Oct; 120(5):647-54. PubMed ID: 10412444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fatigue is more damaging than creep in ligament revealed by modulus reduction and residual strength.
    Thornton GM; Schwab TD; Oxland TR
    Ann Biomed Eng; 2007 Oct; 35(10):1713-21. PubMed ID: 17629791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Creep dominates tensile fatigue damage of the cement-bone interface.
    Kim DG; Miller MA; Mann KA
    J Orthop Res; 2004 May; 22(3):633-40. PubMed ID: 15099645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Damage mechanisms and failure modes of cortical bone under components of physiological loading.
    George WT; Vashishth D
    J Orthop Res; 2005 Sep; 23(5):1047-53. PubMed ID: 16140189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fracture toughness and fatigue crack propagation rate of short fiber reinforced epoxy composites for analogue cortical bone.
    Chong AC; Miller F; Buxton M; Friis EA
    J Biomech Eng; 2007 Aug; 129(4):487-93. PubMed ID: 17655469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of the fatigue behavior of human trabecular and cortical bone tissue.
    Choi K; Goldstein SA
    J Biomech; 1992 Dec; 25(12):1371-81. PubMed ID: 1491015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inelastic strain accumulation in cortical bone during rapid transient tensile loading.
    Fondrk MT; Bahniuk EH; Davy DT
    J Biomech Eng; 1999 Dec; 121(6):616-21. PubMed ID: 10633262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.