These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 12757845)
1. Editorial commentary on "Superoxide reacts with hydroethidine but forms a fluorescent product that is distinctly different from ethidium: potential implications in intracellular fluorescence detection of superoxide" by H. Zhao et al. Fridovich I Free Radic Biol Med; 2003 Jun; 34(11):1357-8. PubMed ID: 12757845 [No Abstract] [Full Text] [Related]
2. Superoxide reacts with hydroethidine but forms a fluorescent product that is distinctly different from ethidium: potential implications in intracellular fluorescence detection of superoxide. Zhao H; Kalivendi S; Zhang H; Joseph J; Nithipatikom K; Vásquez-Vivar J; Kalyanaraman B Free Radic Biol Med; 2003 Jun; 34(11):1359-68. PubMed ID: 12757846 [TBL] [Abstract][Full Text] [Related]
3. HPLC-Based Monitoring of Oxidation of Hydroethidine for the Detection of NADPH Oxidase-Derived Superoxide Radical Anion. Zielonka J; Zielonka M; Kalyanaraman B Methods Mol Biol; 2019; 1982():243-258. PubMed ID: 31172476 [TBL] [Abstract][Full Text] [Related]
5. Critical evaluation of the use of hydroethidine as a measure of superoxide anion radical. Benov L; Sztejnberg L; Fridovich I Free Radic Biol Med; 1998 Nov; 25(7):826-31. PubMed ID: 9823548 [TBL] [Abstract][Full Text] [Related]
7. Selective fluorescent imaging of superoxide in vivo using ethidium-based probes. Robinson KM; Janes MS; Pehar M; Monette JS; Ross MF; Hagen TM; Murphy MP; Beckman JS Proc Natl Acad Sci U S A; 2006 Oct; 103(41):15038-43. PubMed ID: 17015830 [TBL] [Abstract][Full Text] [Related]
8. Mechanistic similarities between oxidation of hydroethidine by Fremy's salt and superoxide: stopped-flow optical and EPR studies. Zielonka J; Zhao H; Xu Y; Kalyanaraman B Free Radic Biol Med; 2005 Oct; 39(7):853-63. PubMed ID: 16140206 [TBL] [Abstract][Full Text] [Related]
9. Cytochrome c-mediated oxidation of hydroethidine and mito-hydroethidine in mitochondria: identification of homo- and heterodimers. Zielonka J; Srinivasan S; Hardy M; Ouari O; Lopez M; Vasquez-Vivar J; Avadhani NG; Kalyanaraman B Free Radic Biol Med; 2008 Mar; 44(5):835-46. PubMed ID: 18155177 [TBL] [Abstract][Full Text] [Related]
10. Detection of 2-hydroxyethidium in cellular systems: a unique marker product of superoxide and hydroethidine. Zielonka J; Vasquez-Vivar J; Kalyanaraman B Nat Protoc; 2008; 3(1):8-21. PubMed ID: 18193017 [TBL] [Abstract][Full Text] [Related]
11. A simplified hydroethidine method for fast and accurate detection of superoxide production in isolated mitochondria. Back P; Matthijssens F; Vanfleteren JR; Braeckman BP Anal Biochem; 2012 Apr; 423(1):147-51. PubMed ID: 22310498 [TBL] [Abstract][Full Text] [Related]
12. Hydroethidine detection of superoxide production during the lithium-pilocarpine model of status epilepticus. Peterson SL; Morrow D; Liu S; Liu KJ Epilepsy Res; 2002 May; 49(3):226-38. PubMed ID: 12076844 [TBL] [Abstract][Full Text] [Related]
13. HPLC study of oxidation products of hydroethidine in chemical and biological systems: ramifications in superoxide measurements. Zielonka J; Hardy M; Kalyanaraman B Free Radic Biol Med; 2009 Feb; 46(3):329-38. PubMed ID: 19026738 [TBL] [Abstract][Full Text] [Related]
14. Detection and characterization of the product of hydroethidine and intracellular superoxide by HPLC and limitations of fluorescence. Zhao H; Joseph J; Fales HM; Sokoloski EA; Levine RL; Vasquez-Vivar J; Kalyanaraman B Proc Natl Acad Sci U S A; 2005 Apr; 102(16):5727-32. PubMed ID: 15824309 [TBL] [Abstract][Full Text] [Related]
15. Qualitative determination of superoxide release at both sides of the mitochondrial inner membrane by capillary electrophoretic analysis of the oxidation products of triphenylphosphonium hydroethidine. Xu X; Arriaga EA Free Radic Biol Med; 2009 Apr; 46(7):905-13. PubMed ID: 19168125 [TBL] [Abstract][Full Text] [Related]
16. Hydropropidine: a novel, cell-impermeant fluorogenic probe for detecting extracellular superoxide. Michalski R; Zielonka J; Hardy M; Joseph J; Kalyanaraman B Free Radic Biol Med; 2013 Jan; 54():135-47. PubMed ID: 23051008 [TBL] [Abstract][Full Text] [Related]
17. Oxidative chemistry of fluorescent dyes: implications in the detection of reactive oxygen and nitrogen species. Kalyanaraman B Biochem Soc Trans; 2011 Oct; 39(5):1221-5. PubMed ID: 21936793 [TBL] [Abstract][Full Text] [Related]
18. The fluorescence detection of superoxide radical using hydroethidine could be complicated by the presence of heme proteins. Papapostolou I; Patsoukis N; Georgiou CD Anal Biochem; 2004 Sep; 332(2):290-8. PubMed ID: 15325298 [TBL] [Abstract][Full Text] [Related]
19. Interference of non-specific peroxidases in the fluorescence detection of superoxide radical by hydroethidine oxidation: a new assay for H2O2. Patsoukis N; Papapostolou I; Georgiou CD Anal Bioanal Chem; 2005 Mar; 381(5):1065-72. PubMed ID: 15690180 [TBL] [Abstract][Full Text] [Related]
20. HPLC-based monitoring of products formed from hydroethidine-based fluorogenic probes--the ultimate approach for intra- and extracellular superoxide detection. Kalyanaraman B; Dranka BP; Hardy M; Michalski R; Zielonka J Biochim Biophys Acta; 2014 Feb; 1840(2):739-44. PubMed ID: 23668959 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]