BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 12757845)

  • 21. The confounding effects of light, sonication, and Mn(III)TBAP on quantitation of superoxide using hydroethidine.
    Zielonka J; Vasquez-Vivar J; Kalyanaraman B
    Free Radic Biol Med; 2006 Oct; 41(7):1050-7. PubMed ID: 16962930
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spectroelectrochemistry study on the electrochemical reduction of ethidium bromide.
    Hu X; Wang Q; He P; Fang Y
    Anal Sci; 2002 Jun; 18(6):645-50. PubMed ID: 12083548
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Novel high-throughput assay for antioxidant capacity against superoxide anion.
    Zhang L; Huang D; Kondo M; Fan E; Ji H; Kou Y; Ou B
    J Agric Food Chem; 2009 Apr; 57(7):2661-7. PubMed ID: 19275163
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydroethidine- and MitoSOX-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: another inconvenient truth.
    Zielonka J; Kalyanaraman B
    Free Radic Biol Med; 2010 Apr; 48(8):983-1001. PubMed ID: 20116425
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The selective detection of mitochondrial superoxide by live cell imaging.
    Robinson KM; Janes MS; Beckman JS
    Nat Protoc; 2008; 3(6):941-7. PubMed ID: 18536642
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pulse radiolysis and steady-state analyses of the reaction between hydroethidine and superoxide and other oxidants.
    Zielonka J; Sarna T; Roberts JE; Wishart JF; Kalyanaraman B
    Arch Biochem Biophys; 2006 Dec; 456(1):39-47. PubMed ID: 17081495
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Superoxide production in rat hippocampal neurons: selective imaging with hydroethidine.
    Bindokas VP; Jordán J; Lee CC; Miller RJ
    J Neurosci; 1996 Feb; 16(4):1324-36. PubMed ID: 8778284
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Measurement of Superoxide Production and NADPH Oxidase Activity by HPLC Analysis of Dihydroethidium Oxidation.
    Fernandes DC; Gonçalves RC; Laurindo FR
    Methods Mol Biol; 2017; 1527():233-249. PubMed ID: 28116721
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Methods to monitor ROS production by fluorescence microscopy and fluorometry.
    Wojtala A; Bonora M; Malinska D; Pinton P; Duszynski J; Wieckowski MR
    Methods Enzymol; 2014; 542():243-62. PubMed ID: 24862270
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Use of potentiometric fluorophores in the measurement of mitochondrial reactive oxygen species.
    Polster BM; Nicholls DG; Ge SX; Roelofs BA
    Methods Enzymol; 2014; 547():225-50. PubMed ID: 25416361
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Manganese superoxide dismutase deficiency exacerbates cerebral infarction after focal cerebral ischemia/reperfusion in mice: implications for the production and role of superoxide radicals.
    Kim GW; Kondo T; Noshita N; Chan PH
    Stroke; 2002 Mar; 33(3):809-15. PubMed ID: 11872908
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On the use of fluorescence lifetime imaging and dihydroethidium to detect superoxide in intact animals and ex vivo tissues: a reassessment.
    Michalski R; Michalowski B; Sikora A; Zielonka J; Kalyanaraman B
    Free Radic Biol Med; 2014 Feb; 67():278-84. PubMed ID: 24200598
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simultaneously monitoring the superoxide in the mitochondrial matrix and extramitochondrial space by micellar electrokinetic chromatography with laser-induced fluorescence.
    Meany DL; Thompson L; Arriaga EA
    Anal Chem; 2007 Jun; 79(12):4588-94. PubMed ID: 17492834
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intracellular hydrogen peroxide and superoxide anion detection in endothelial cells.
    Carter WO; Narayanan PK; Robinson JP
    J Leukoc Biol; 1994 Feb; 55(2):253-8. PubMed ID: 8301222
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Flow cytometric analysis of respiratory burst activity in phagocytes with hydroethidine and 2',7'-dichlorofluorescin.
    Rothe G; Valet G
    J Leukoc Biol; 1990 May; 47(5):440-8. PubMed ID: 2159514
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recent developments in detection of superoxide radical anion and hydrogen peroxide: Opportunities, challenges, and implications in redox signaling.
    Kalyanaraman B; Hardy M; Podsiadly R; Cheng G; Zielonka J
    Arch Biochem Biophys; 2017 Mar; 617():38-47. PubMed ID: 27590268
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Flow cytometric analysis of cell suspensions exposed to shock waves in the presence of the radical sensitive dye hydroethidine.
    Endl E; Steinbach P; Hofstädter F
    Ultrasound Med Biol; 1995; 21(4):569-77. PubMed ID: 7571150
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Superoxide radical detection in cells, tissues, organisms (animals, plants, insects, microorganisms) and soils.
    Georgiou CD; Papapostolou I; Grintzalis K
    Nat Protoc; 2008; 3(11):1679-92. PubMed ID: 18846095
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chemical cytometry quantitates superoxide levels in the mitochondrial matrix of single myoblasts.
    Xu X; Arriaga EA
    Anal Chem; 2010 Aug; 82(16):6745-50. PubMed ID: 20704362
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assessment of superoxide production and NADPH oxidase activity by HPLC analysis of dihydroethidium oxidation products.
    Laurindo FR; Fernandes DC; Santos CX
    Methods Enzymol; 2008; 441():237-60. PubMed ID: 18554538
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.