These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 12758040)
1. Green or red: what stops the traffic in the tetrapyrrole pathway? Cornah JE; Terry MJ; Smith AG Trends Plant Sci; 2003 May; 8(5):224-30. PubMed ID: 12758040 [TBL] [Abstract][Full Text] [Related]
2. Regulation of tetrapyrrole biosynthesis in higher plants. Moulin M; Smith AG Biochem Soc Trans; 2005 Aug; 33(Pt 4):737-42. PubMed ID: 16042589 [TBL] [Abstract][Full Text] [Related]
3. Tetrapyrrole biosynthesis in higher plants. Tanaka R; Tanaka A Annu Rev Plant Biol; 2007; 58():321-46. PubMed ID: 17227226 [TBL] [Abstract][Full Text] [Related]
4. Tobacco Mg protoporphyrin IX methyltransferase is involved in inverse activation of Mg porphyrin and protoheme synthesis. Alawady AE; Grimm B Plant J; 2005 Jan; 41(2):282-90. PubMed ID: 15634204 [TBL] [Abstract][Full Text] [Related]
5. Small Cab-like proteins regulating tetrapyrrole biosynthesis in the cyanobacterium Synechocystis sp. PCC 6803. Xu H; Vavilin D; Funk C; Vermaas W Plant Mol Biol; 2002 May; 49(2):149-60. PubMed ID: 11999371 [TBL] [Abstract][Full Text] [Related]
7. Regulation and function of tetrapyrrole biosynthesis in plants and algae. Brzezowski P; Richter AS; Grimm B Biochim Biophys Acta; 2015 Sep; 1847(9):968-85. PubMed ID: 25979235 [TBL] [Abstract][Full Text] [Related]
8. GUN4 is required for posttranslational control of plant tetrapyrrole biosynthesis. Peter E; Grimm B Mol Plant; 2009 Nov; 2(6):1198-210. PubMed ID: 19995725 [TBL] [Abstract][Full Text] [Related]
9. Metabolic control of the tetrapyrrole biosynthetic pathway for porphyrin distribution in the barley mutant albostrians. Yaronskaya E; Ziemann V; Walter G; Averina N; Börner T; Grimm B Plant J; 2003 Aug; 35(4):512-22. PubMed ID: 12904213 [TBL] [Abstract][Full Text] [Related]
10. The regulation of enzymes involved in chlorophyll biosynthesis. Reinbothe S; Reinbothe C Eur J Biochem; 1996 Apr; 237(2):323-43. PubMed ID: 8647070 [TBL] [Abstract][Full Text] [Related]
11. Post-translational control of tetrapyrrole biosynthesis in plants, algae, and cyanobacteria. Czarnecki O; Grimm B J Exp Bot; 2012 Feb; 63(4):1675-87. PubMed ID: 22231500 [TBL] [Abstract][Full Text] [Related]
12. Methods for analysis of photosynthetic pigments and steady-state levels of intermediates of tetrapyrrole biosynthesis. Czarnecki O; Peter E; Grimm B Methods Mol Biol; 2011; 775():357-85. PubMed ID: 21863454 [TBL] [Abstract][Full Text] [Related]
13. The cell biology of tetrapyrroles: a life and death struggle. Mochizuki N; Tanaka R; Grimm B; Masuda T; Moulin M; Smith AG; Tanaka A; Terry MJ Trends Plant Sci; 2010 Sep; 15(9):488-98. PubMed ID: 20598625 [TBL] [Abstract][Full Text] [Related]
14. Post-translational regulation of metabolic checkpoints in plant tetrapyrrole biosynthesis. Wang P; Ji S; Grimm B J Exp Bot; 2022 Aug; 73(14):4624-4636. PubMed ID: 35536687 [TBL] [Abstract][Full Text] [Related]
15. Concurrent interactions of heme and FLU with Glu tRNA reductase (HEMA1), the target of metabolic feedback inhibition of tetrapyrrole biosynthesis, in dark- and light-grown Arabidopsis plants. Goslings D; Meskauskiene R; Kim C; Lee KP; Nater M; Apel K Plant J; 2004 Dec; 40(6):957-67. PubMed ID: 15584960 [TBL] [Abstract][Full Text] [Related]
16. Role of magnesium chelatase activity in the early steps of the tetrapyrrole biosynthetic pathway. Papenbrock J; Mock HP; Tanaka R; Kruse E; Grimm B Plant Physiol; 2000 Apr; 122(4):1161-9. PubMed ID: 10759511 [TBL] [Abstract][Full Text] [Related]
17. Mg-protoporphyrin IX and heme control HEMA, the gene encoding the first specific step of tetrapyrrole biosynthesis, in Chlamydomonas reinhardtii. Vasileuskaya Z; Oster U; Beck CF Eukaryot Cell; 2005 Oct; 4(10):1620-8. PubMed ID: 16215169 [TBL] [Abstract][Full Text] [Related]
18. FC2 stabilizes POR and suppresses ALA formation in the tetrapyrrole biosynthesis pathway. Fan T; Roling L; Hedtke B; Grimm B New Phytol; 2023 Jul; 239(2):624-638. PubMed ID: 37161708 [TBL] [Abstract][Full Text] [Related]
19. Separate physiological roles and subcellular compartments for two tetrapyrrole biosynthetic pathways in Euglena gracilis. Weinstein JD; Beale SI J Biol Chem; 1983 Jun; 258(11):6799-807. PubMed ID: 6133868 [TBL] [Abstract][Full Text] [Related]
20. Cytokinin effects on tetrapyrrole biosynthesis and photosynthetic activity in barley seedlings. Yaronskaya E; Vershilovskaya I; Poers Y; Alawady AE; Averina N; Grimm B Planta; 2006 Aug; 224(3):700-9. PubMed ID: 16506064 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]