BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 12758256)

  • 1. Detection of farnesyl diphosphate accumulation in yeast ERG9 mutants.
    Song L
    Anal Biochem; 2003 Jun; 317(2):180-5. PubMed ID: 12758256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A soluble form of phosphatase in Saccharomyces cerevisiae capable of converting farnesyl diphosphate into E,E-farnesol.
    Song L
    Appl Biochem Biotechnol; 2006 Feb; 128(2):149-58. PubMed ID: 16484724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recovery of E,E-farnesol from cultures of yeast erg9 mutants: extraction with polymeric beads and purification by normal-phase chromatography.
    Song L
    Biotechnol Prog; 2009; 25(4):1111-4. PubMed ID: 19569196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redirection of flux through the FPP branch-point in Saccharomyces cerevisiae by down-regulating squalene synthase.
    Paradise EM; Kirby J; Chan R; Keasling JD
    Biotechnol Bioeng; 2008 Jun; 100(2):371-8. PubMed ID: 18175359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of farnesyl diphosphate pool as direct precursor of sesquiterpenes through metabolic engineering of the mevalonate pathway in Saccharomyces cerevisiae.
    Asadollahi MA; Maury J; Schalk M; Clark A; Nielsen J
    Biotechnol Bioeng; 2010 May; 106(1):86-96. PubMed ID: 20091767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of plant sesquiterpenes in Saccharomyces cerevisiae: effect of ERG9 repression on sesquiterpene biosynthesis.
    Asadollahi MA; Maury J; Møller K; Nielsen KF; Schalk M; Clark A; Nielsen J
    Biotechnol Bioeng; 2008 Feb; 99(3):666-77. PubMed ID: 17705244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A squalene synthase protein degradation method for improved sesquiterpene production in Saccharomyces cerevisiae.
    Peng B; Plan MR; Chrysanthopoulos P; Hodson MP; Nielsen LK; Vickers CE
    Metab Eng; 2017 Jan; 39():209-219. PubMed ID: 27939849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A highly conserved signal controls degradation of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase in eukaryotes.
    Gardner RG; Hampton RY
    J Biol Chem; 1999 Oct; 274(44):31671-8. PubMed ID: 10531376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Various oils and detergents enhance the microbial production of farnesol and related prenyl alcohols.
    Muramatsu M; Ohto C; Obata S; Sakuradani E; Shimizu S
    J Biosci Bioeng; 2008 Sep; 106(3):263-7. PubMed ID: 18930003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Yeast squalene synthase. A mechanism for addition of substrates and activation by NADPH.
    Mookhtiar KA; Kalinowski SS; Zhang D; Poulter CD
    J Biol Chem; 1994 Apr; 269(15):11201-7. PubMed ID: 8157649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The regulation of activity of main mevalonic acid pathway enzymes: farnesyl diphosphate synthase, 3-hydroxy-3-methylglutaryl-CoA reductase, and squalene synthase in yeast Saccharomyces cerevisiae.
    Szkopińska A; Swiezewska E; Karst F
    Biochem Biophys Res Commun; 2000 Jan; 267(1):473-7. PubMed ID: 10623644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sterol pathway in yeast. Identification and properties of mutant strains defective in mevalonate diphosphate decarboxylase and farnesyl diphosphate synthetase.
    Chambon C; Ladeveze V; Servouse M; Blanchard L; Javelot C; Vladescu B; Karst F
    Lipids; 1991 Aug; 26(8):633-6. PubMed ID: 1779710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of squalene synthase gene disruption on synthesis of polyprenols in Saccharomyces cerevisiae.
    Grabowska D; Karst F; Szkopińska A
    FEBS Lett; 1998 Sep; 434(3):406-8. PubMed ID: 9742963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification to homogeneity and some properties of squalene synthetase.
    Sasiak K; Rilling HC
    Arch Biochem Biophys; 1988 Feb; 260(2):622-7. PubMed ID: 3277535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptional regulation of the squalene synthase gene (ERG9) in the yeast Saccharomyces cerevisiae.
    Kennedy MA; Barbuch R; Bard M
    Biochim Biophys Acta; 1999 Apr; 1445(1):110-22. PubMed ID: 10209263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Squalene synthase: steady-state, pre-steady-state, and isotope-trapping studies.
    Radisky ES; Poulter CD
    Biochemistry; 2000 Feb; 39(7):1748-60. PubMed ID: 10677224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Squalene synthetase.
    Agnew WS
    Methods Enzymol; 1985; 110():359-73. PubMed ID: 3894879
    [No Abstract]   [Full Text] [Related]  

  • 18. Identification of farnesol as the non-sterol derivative of mevalonic acid required for the accelerated degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase.
    Correll CC; Ng L; Edwards PA
    J Biol Chem; 1994 Jul; 269(26):17390-3. PubMed ID: 8021239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolism of farnesyl diphosphate in tobacco BY-2 cells treated with squalestatin.
    Hartmann MA; Wentzinger L; Hemmerlin A; Bach TJ
    Biochem Soc Trans; 2000 Dec; 28(6):794-6. PubMed ID: 11171211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Squalene synthetase. Stoichiometry and kinetics of presqualene pyrophosphate and squalene synthesis by yeast microsomes.
    Agnew WS; Popják G
    J Biol Chem; 1978 Jul; 253(13):4566-73. PubMed ID: 26684
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.