BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 12759352)

  • 21. Towards understanding the nitrogen signal transduction for nif gene expression in Klebsiella pneumoniae.
    Glöer J; Thummer R; Ullrich H; Schmitz RA
    FEBS J; 2008 Dec; 275(24):6281-94. PubMed ID: 19016838
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The C-terminal domain of NifL is sufficient to inhibit NifA activity.
    Narberhaus F; Lee HS; Schmitz RA; He L; Kustu S
    J Bacteriol; 1995 Sep; 177(17):5078-87. PubMed ID: 7665487
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Purification and in vitro activities of the native nitrogen fixation control proteins NifA and NifL.
    Austin S; Buck M; Cannon W; Eydmann T; Dixon R
    J Bacteriol; 1994 Jun; 176(12):3460-5. PubMed ID: 8206822
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Azotobacter vinelandii NIFL is a flavoprotein that modulates transcriptional activation of nitrogen-fixation genes via a redox-sensitive switch.
    Hill S; Austin S; Eydmann T; Jones T; Dixon R
    Proc Natl Acad Sci U S A; 1996 Mar; 93(5):2143-8. PubMed ID: 8700899
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transcriptional activation of the nitrogenase promoter in vitro: adenosine nucleotides are required for inhibition of NIFA activity by NIFL.
    Eydmann T; Söderbäck E; Jones T; Hill S; Austin S; Dixon R
    J Bacteriol; 1995 Mar; 177(5):1186-95. PubMed ID: 7868590
    [TBL] [Abstract][Full Text] [Related]  

  • 26. GlnK effects complex formation between NifA and NifL in Klebsiella pneumoniae.
    Stips J; Thummer R; Neumann M; Schmitz RA
    Eur J Biochem; 2004 Aug; 271(16):3379-88. PubMed ID: 15291815
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural insights into redox signal transduction mechanisms in the control of nitrogen fixation by the NifLA system.
    Boyer NR; Tokmina-Lukaszewska M; Bueno Batista M; Mus F; Dixon R; Bothner B; Peters JW
    Proc Natl Acad Sci U S A; 2023 Jul; 120(30):e2302732120. PubMed ID: 37459513
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genetic Determinants of Ammonium Excretion in
    Mus F; Khokhani D; MacIntyre AM; Rugoli E; Dixon R; Ané JM; Peters JW
    Appl Environ Microbiol; 2022 Mar; 88(6):e0187621. PubMed ID: 35138932
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects.
    Steenhoudt O; Vanderleyden J
    FEMS Microbiol Rev; 2000 Oct; 24(4):487-506. PubMed ID: 10978548
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of ATP and 2-oxoglutarate on the in vitro interaction between the NifA GAF domain and the GlnB protein of Azospirillum brasilense.
    Sotomaior P; Araújo LM; Nishikawa CY; Huergo LF; Monteiro RA; Pedrosa FO; Chubatsu LS; Souza EM
    Braz J Med Biol Res; 2012 Dec; 45(12):1135-40. PubMed ID: 22983183
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The signal transduction protein GlnK is required for NifL-dependent nitrogen control of nif gene expression in Klebsiella pneumoniae.
    Jack R; De Zamaroczy M; Merrick M
    J Bacteriol; 1999 Feb; 181(4):1156-62. PubMed ID: 9973341
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The oxygen-responsive NIFL-NIFA complex: a novel two-component regulatory system controlling nitrogenase synthesis in gamma-proteobacteria.
    Dixon R
    Arch Microbiol; 1998 May; 169(5):371-80. PubMed ID: 9560416
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Physiological role for the GlnK protein of enteric bacteria: relief of NifL inhibition under nitrogen-limiting conditions.
    He L; Soupene E; Ninfa A; Kustu S
    J Bacteriol; 1998 Dec; 180(24):6661-7. PubMed ID: 9852012
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular Mechanism and Agricultural Application of the NifA-NifL System for Nitrogen Fixation.
    Zhang W; Chen Y; Huang K; Wang F; Mei Z
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36674420
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of a NifL-like protein in a diazotroph of the beta-subgroup of the Proteobacteria, Azoarcus sp. strain BH72.
    Egener T; Sarkar A; Martin DE; Reinhold-Hurek B
    Microbiology (Reading); 2002 Oct; 148(Pt 10):3203-3212. PubMed ID: 12368454
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Redundancy of the conserved His residue in Azotobacter vinelandii NifL, a histidine autokinase homologue which regulates transcription of nitrogen fixation genes.
    Woodley P; Drummond M
    Mol Microbiol; 1994 Aug; 13(4):619-26. PubMed ID: 7997174
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulation of Herbaspirillum seropedicae NifA by the GlnK PII signal transduction protein is mediated by effectors binding to allosteric sites.
    Stefanello AA; Oliveira MAS; Souza EM; Pedrosa FO; Chubatsu LS; Huergo LF; Dixon R; Monteiro RA
    Biochim Biophys Acta Proteins Proteom; 2020 Mar; 1868(3):140348. PubMed ID: 31866507
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interaction between NifL and NifA in the nitrogen-fixing Pseudomonas stutzeri A1501.
    Xie Z; Dou Y; Ping S; Chen M; Wang G; Elmerich C; Lin M
    Microbiology (Reading); 2006 Dec; 152(Pt 12):3535-3542. PubMed ID: 17159205
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The isolated catalytic domain of NIFA, a bacterial enhancer-binding protein, activates transcription in vitro: activation is inhibited by NIFL.
    Berger DK; Narberhaus F; Kustu S
    Proc Natl Acad Sci U S A; 1994 Jan; 91(1):103-7. PubMed ID: 8278350
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Studies on the roles of GlnK and GlnB in regulating Klebsiella pneumoniae NifL-dependent nitrogen control.
    Arcondéguy T; van Heeswijk WC; Merrick M
    FEMS Microbiol Lett; 1999 Nov; 180(2):263-70. PubMed ID: 10556721
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.