BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 12759360)

  • 1. Nanosecond dynamics of the mouse acetylcholinesterase cys69-cys96 omega loop.
    Shi J; Tai K; McCammon JA; Taylor P; Johnson DA
    J Biol Chem; 2003 Aug; 278(33):30905-11. PubMed ID: 12759360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibitors of different structure induce distinguishing conformations in the omega loop, Cys69-Cys96, of mouse acetylcholinesterase.
    Shi J; Radic' Z; Taylor P
    J Biol Chem; 2002 Nov; 277(45):43301-8. PubMed ID: 12196517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanosecond dynamics of acetylcholinesterase near the active center gorge.
    Boyd AE; Dunlop CS; Wong L; Radic Z; Taylor P; Johnson DA
    J Biol Chem; 2004 Jun; 279(25):26612-8. PubMed ID: 15078872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversibly bound and covalently attached ligands induce conformational changes in the omega loop, Cys69-Cys96, of mouse acetylcholinesterase.
    Shi J; Boyd AE; Radic Z; Taylor P
    J Biol Chem; 2001 Nov; 276(45):42196-204. PubMed ID: 11517229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing the active center gorge of acetylcholinesterase by fluorophores linked to substituted cysteines.
    Boyd AE; Marnett AB; Wong L; Taylor P
    J Biol Chem; 2000 Jul; 275(29):22401-8. PubMed ID: 10779503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrostatic influence on the kinetics of ligand binding to acetylcholinesterase. Distinctions between active center ligands and fasciculin.
    Radić Z; Kirchhoff PD; Quinn DM; McCammon JA; Taylor P
    J Biol Chem; 1997 Sep; 272(37):23265-77. PubMed ID: 9287336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The fasciculin-acetylcholinesterase interaction].
    Marchot P
    J Soc Biol; 1999; 193(6):505-8. PubMed ID: 10783708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of acetylcholinesterase inhibition by fasciculin: a 5-ns molecular dynamics simulation.
    Tai K; Shen T; Henchman RH; Bourne Y; Marchot P; McCammon JA
    J Am Chem Soc; 2002 May; 124(21):6153-61. PubMed ID: 12022850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Site-directed mutants designed to test back-door hypotheses of acetylcholinesterase function.
    Faerman C; Ripoll D; Bon S; Le Feuvre Y; Morel N; Massoulié J; Sussman JL; Silman I
    FEBS Lett; 1996 May; 386(1):65-71. PubMed ID: 8635606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of an acetylcholinesterase-fasciculin complex: interaction of a three-fingered toxin from snake venom with its target.
    Harel M; Kleywegt GJ; Ravelli RB; Silman I; Sussman JL
    Structure; 1995 Dec; 3(12):1355-66. PubMed ID: 8747462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acetylcholinesterase: enhanced fluctuations and alternative routes to the active site in the complex with fasciculin-2.
    Bui JM; Tai K; McCammon JA
    J Am Chem Soc; 2004 Jun; 126(23):7198-205. PubMed ID: 15186156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gorge Motions of Acetylcholinesterase Revealed by Microsecond Molecular Dynamics Simulations.
    Cheng S; Song W; Yuan X; Xu Y
    Sci Rep; 2017 Jun; 7(1):3219. PubMed ID: 28607438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Allosteric control of acetylcholinesterase catalysis by fasciculin.
    Radić Z; Quinn DM; Vellom DC; Camp S; Taylor P
    J Biol Chem; 1995 Sep; 270(35):20391-9. PubMed ID: 7657613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acetylthiocholine binds to asp74 at the peripheral site of human acetylcholinesterase as the first step in the catalytic pathway.
    Mallender WD; Szegletes T; Rosenberry TL
    Biochemistry; 2000 Jul; 39(26):7753-63. PubMed ID: 10869180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Properties of water molecules in the active site gorge of acetylcholinesterase from computer simulation.
    Henchman RH; Tai K; Shen T; McCammon JA
    Biophys J; 2002 May; 82(5):2671-82. PubMed ID: 11964254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site of fasciculin interaction with acetylcholinesterase.
    Radić Z; Duran R; Vellom DC; Li Y; Cervenansky C; Taylor P
    J Biol Chem; 1994 Apr; 269(15):11233-9. PubMed ID: 8157652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Does "butyrylization" of acetylcholinesterase through substitution of the six divergent aromatic amino acids in the active center gorge generate an enzyme mimic of butyrylcholinesterase?
    Kaplan D; Ordentlich A; Barak D; Ariel N; Kronman C; Velan B; Shafferman A
    Biochemistry; 2001 Jun; 40(25):7433-45. PubMed ID: 11412096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural modifications of the omega loop in human acetylcholinesterase.
    Velan B; Barak D; Ariel N; Leitner M; Bino T; Ordentlich A; Shafferman A
    FEBS Lett; 1996 Oct; 395(1):22-8. PubMed ID: 8849682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The 'aromatic patch' of three proximal residues in the human acetylcholinesterase active centre allows for versatile interaction modes with inhibitors.
    Ariel N; Ordentlich A; Barak D; Bino T; Velan B; Shafferman A
    Biochem J; 1998 Oct; 335 ( Pt 1)(Pt 1):95-102. PubMed ID: 9742217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexibility of aromatic residues in the active-site gorge of acetylcholinesterase: X-ray versus molecular dynamics.
    Xu Y; Colletier JP; Weik M; Jiang H; Moult J; Silman I; Sussman JL
    Biophys J; 2008 Sep; 95(5):2500-11. PubMed ID: 18502801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.