BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 12759744)

  • 1. Transcriptional analysis of the genetic elements involved in the lysogeny/lysis switch in the temperate lactococcal bacteriophage phiLC3, and identification of the Cro-like protein ORF76.
    Blatny JM; Ventura M; Rosenhaven EM; Risøen PA; Lunde M; Brüssow H; Nes IF
    Mol Genet Genomics; 2003 Jul; 269(4):487-98. PubMed ID: 12759744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of a regulator involved in the genetic switch between lysis and lysogeny of the temperate Lactococcus lactis phage phi LC3.
    Blatny JM; Risøen PA; Lillehaug D; Lunde M; Nes IF
    Mol Genet Genomics; 2001 Mar; 265(1):189-97. PubMed ID: 11370866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of the genetic switch and replication region of a P335-type bacteriophage with an obligate lytic lifestyle on Lactococcus lactis.
    Madsen SM; Mills D; Djordjevic G; Israelsen H; Klaenhammer TR
    Appl Environ Microbiol; 2001 Mar; 67(3):1128-39. PubMed ID: 11229902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lactococcus lactis lytic bacteriophages of the P335 group are inhibited by overexpression of a truncated CI repressor.
    Durmaz E; Madsen SM; Israelsen H; Klaenhammer TR
    J Bacteriol; 2002 Dec; 184(23):6532-44. PubMed ID: 12426341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the lytic-lysogenic switch of the lactococcal bacteriophage Tuc2009.
    Kenny JG; Leach S; de la Hoz AB; Venema G; Kok J; Fitzgerald GF; Nauta A; Alonso JC; van Sinderen D
    Virology; 2006 Apr; 347(2):434-46. PubMed ID: 16410016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal transcription of the lactococcal temperate phage TP901-1 and DNA sequence of the early promoter region.
    Madsen PL; Hammer K
    Microbiology (Reading); 1998 Aug; 144 ( Pt 8)():2203-2215. PubMed ID: 9720042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complete genomic sequence of bacteriophage ul36: demonstration of phage heterogeneity within the P335 quasi-species of lactococcal phages.
    Labrie S; Moineau S
    Virology; 2002 May; 296(2):308-20. PubMed ID: 12069529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repression of the lysogenic P
    Pedersen M; Neergaard JT; Cassias J; Rasmussen KK; Lo Leggio L; Sneppen K; Hammer K; Kilstrup M
    Sci Rep; 2020 May; 10(1):8659. PubMed ID: 32457340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the lysogeny DNA module from the temperate Streptococcus thermophilus bacteriophage phi Sfi21.
    Bruttin A; Desiere F; Lucchini S; Foley S; Brüssow H
    Virology; 1997 Jun; 233(1):136-48. PubMed ID: 9201223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The life cycles of the temperate lactococcal bacteriophage phiLC3 monitored by a quantitative PCR method.
    Lunde M; Blatny JM; Kaper F; Nes IF; Lillehaug D
    FEMS Microbiol Lett; 2000 Nov; 192(1):119-24. PubMed ID: 11040439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of operator sites of the CI repressor of phage TP901-1: evolutionary link to other phages.
    Johansen AH; Brøndsted L; Hammer K
    Virology; 2003 Jun; 311(1):144-56. PubMed ID: 12832212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of prophage genes expressed in lysogens of the Lactococcus lactis bacteriophage BK5-T.
    Boyce JD; Davidson BE; Hillier AJ
    Appl Environ Microbiol; 1995 Nov; 61(11):4099-104. PubMed ID: 8526524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular and transcriptional analysis of the temperate lactococcal bacteriophage Tuc2009.
    Seegers JF; Mc Grath S; O'Connell-Motherway M; Arendt EK; van de Guchte M; Creaven M; Fitzgerald GF; van Sinderen D
    Virology; 2004 Nov; 329(1):40-52. PubMed ID: 15476873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular and biochemical analysis of the system regulating the lytic/lysogenic cycle in the pneumococcal temperate phage MM1.
    Obregón V; García P; López R; García JL
    FEMS Microbiol Lett; 2003 May; 222(2):193-7. PubMed ID: 12770707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complete genome sequence of the Lactococcus lactis temperate phage phiLC3: comparative analysis of phiLC3 and its relatives in lactococci and streptococci.
    Blatny JM; Godager L; Lunde M; Nes IF
    Virology; 2004 Jan; 318(1):231-44. PubMed ID: 14972551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of the integration elements encoded by the temperate lactococcal bacteriophage TP901-1 to obtain chromosomal single-copy transcriptional fusions in Lactococcus lactis.
    Brøndsted L; Hammer K
    Appl Environ Microbiol; 1999 Feb; 65(2):752-8. PubMed ID: 9925612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The genetic switch regulating activity of early promoters of the temperate lactococcal bacteriophage TP901-1.
    Madsen PL; Johansen AH; Hammer K; Brøndsted L
    J Bacteriol; 1999 Dec; 181(24):7430-8. PubMed ID: 10601198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the lysogenic repressor (c) gene of the Pseudomonas aeruginosa transposable bacteriophage D3112.
    Salmon KA; Freedman O; Ritchings BW; DuBow MS
    Virology; 2000 Jun; 272(1):85-97. PubMed ID: 10873751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Developmental Switch in Bacteriophage λ: A Critical Role of the Cro Protein.
    Lee S; Lewis DEA; Adhya S
    J Mol Biol; 2018 Jan; 430(1):58-68. PubMed ID: 29158090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of MOR and the CI operator sites on the genetic switch of the temperate bacteriophage TP901-1.
    Pedersen M; Hammer K
    J Mol Biol; 2008 Dec; 384(3):577-89. PubMed ID: 18930065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.