These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 12759809)
1. Biotransformation of beta-ketosulfides to produce chiral beta-hydroxysulfoxides. Holland HL; Brown FM; Barrett F; French J; Johnson DV J Ind Microbiol Biotechnol; 2003 May; 30(5):292-301. PubMed ID: 12759809 [TBL] [Abstract][Full Text] [Related]
2. Comparative molecular field analysis (CoMFA) for sulfoxidation reactions in Mortierella isabellina ATCC 42613 and Helminthosporium sp. NRRL 4671. Huang WH; Wilcox RE; Davis PJ J Mol Model; 2002 Jan; 8(1):8-23. PubMed ID: 12111398 [TBL] [Abstract][Full Text] [Related]
3. Biotransformation of organic sulfides--IV. Formation of chiral benzyl alkyl and phenyl alkyl sulfoxides by Helminthosporium species NRRL 4671. Holland HL; Brown FM; Larsen BG Bioorg Med Chem; 1994 Jul; 2(7):647-52. PubMed ID: 7858971 [TBL] [Abstract][Full Text] [Related]
4. Highly enantioselective oxidation of phenyl methyl sulfide and its derivatives into optically pure (S)-sulfoxides with Rhodococcus sp. CCZU10-1 in an n-octane-water biphasic system. He YC; Ma CL; Yang ZX; Zhou M; Xing Z; Ma JT; Yu HL Appl Microbiol Biotechnol; 2013 Dec; 97(24):10329-37. PubMed ID: 24092008 [TBL] [Abstract][Full Text] [Related]
5. Fungal biotransformation of organophosphines. Holland HL; Carey M; Kumaresan S Xenobiotica; 1993 May; 23(5):519-24. PubMed ID: 8342299 [TBL] [Abstract][Full Text] [Related]
6. Resolution of racemic sulfoxides with high productivity and enantioselectivity by a Rhodococcus sp. strain as an alternative to biooxidation of prochiral sulfides for efficient production of enantiopure sulfoxides. Li AT; Yu HL; Pan J; Zhang JD; Xu JH; Lin GQ Bioresour Technol; 2011 Jan; 102(2):1537-42. PubMed ID: 20810278 [TBL] [Abstract][Full Text] [Related]
7. Isolation of Rhodococcus sp. strain ECU0066, a new sulfide monooxygenase-producing strain for asymmetric sulfoxidation. Li AT; Zhang JD; Xu JH; Lu WY; Lin GQ Appl Environ Microbiol; 2009 Jan; 75(2):551-6. PubMed ID: 18836022 [TBL] [Abstract][Full Text] [Related]
8. Biotransformations of the cardiovascular drugs mexrenone and canrenone. Preisig CL; Laakso JA; Mocek UM; Wang PT; Baez J; Byng G J Nat Prod; 2003 Mar; 66(3):350-6. PubMed ID: 12662091 [TBL] [Abstract][Full Text] [Related]
9. Enantioselective synthesis and pharmacological evaluation of a new type of verapamil analog with hypotensive and calcium antagonist activities. Holland HL; Gu JX; Orallo F; Camiña M; Fabeiro P; Willetts AJ Pharm Res; 1999 Feb; 16(2):281-7. PubMed ID: 10100315 [TBL] [Abstract][Full Text] [Related]
10. Synthesis of optically pure S-sulfoxide by Escherichia coli transformant cells coexpressing the P450 monooxygenase and glucose dehydrogenase genes. Zhang JD; Li AT; Yu HL; Imanaka T; Xu JH J Ind Microbiol Biotechnol; 2011 May; 38(5):633-41. PubMed ID: 20721599 [TBL] [Abstract][Full Text] [Related]
12. Sequence analysis and heterologous expression of a new cytochrome P450 monooxygenase from Rhodococcus sp. for asymmetric sulfoxidation. Zhang JD; Li AT; Yang Y; Xu JH Appl Microbiol Biotechnol; 2010 Jan; 85(3):615-24. PubMed ID: 19633839 [TBL] [Abstract][Full Text] [Related]
13. Nitrile biotransformations for the synthesis of highly enantioenriched beta-hydroxy and beta-amino acid and amide derivatives: a general and simple but powerful and efficient benzyl protection strategy to increase enantioselectivity of the amidase. Ma DY; Wang DX; Pan J; Huang ZT; Wang MX J Org Chem; 2008 Jun; 73(11):4087-91. PubMed ID: 18459810 [TBL] [Abstract][Full Text] [Related]
14. Microbial biotransformations of a synthetic immunomodulating agent, HR325. Lacroix I; Biton J; Azerad R Bioorg Med Chem; 1997 Jul; 5(7):1369-80. PubMed ID: 9377097 [TBL] [Abstract][Full Text] [Related]
15. Dramatic enhancement of enantioselectivity of biotransformations of beta-hydroxy nitriles using a simple O-benzyl protection/docking group. Ma DY; Zheng QY; Wang DX; Wang MX Org Lett; 2006 Jul; 8(15):3231-4. PubMed ID: 16836373 [TBL] [Abstract][Full Text] [Related]
16. High-performance liquid chromatographic determination of pergolide and its metabolite, pergolide sulfoxide, in microbial extracts. Kerr KM; Smith RV; Davis PJ J Chromatogr; 1981 Dec; 219(2):317-20. PubMed ID: 7320134 [No Abstract] [Full Text] [Related]
17. Biotechnological methods for chalcone reduction using whole cells of Lactobacillus, Rhodococcus and Rhodotorula strains as a way to produce new derivatives. Stompor M; Kałużny M; Żarowska B Appl Microbiol Biotechnol; 2016 Oct; 100(19):8371-84. PubMed ID: 27209040 [TBL] [Abstract][Full Text] [Related]
18. Microbial models of mammalian metabolism. Fungal metabolism of phenolic and nonphenolic p-cymene-related drugs and prodrugs. II. Metabolites of nonphenolic derivatives. Moussa C; Houziaux P; Danree B; Azerad R Drug Metab Dispos; 1997 Mar; 25(3):311-6. PubMed ID: 9172948 [TBL] [Abstract][Full Text] [Related]
19. Stereoselective epoxidation of 2,2-dimethyl-2H-1-benzopyran-6-carbonitrile. Patel RN; Banerjee A; Davis B; Howell J; McNamee C; Brzozowaski D; North J; Kronenthal D; Szarka L Bioorg Med Chem; 1994 Jun; 2(6):535-42. PubMed ID: 8000876 [TBL] [Abstract][Full Text] [Related]
20. Opposite enantioselectivities of two phenotypically and genotypically similar strains of Pseudomonas frederiksbergensis in bacterial whole-cell sulfoxidation. Adam W; Heckel F; Saha-Möller CR; Taupp M; Meyer JM; Schreier P Appl Environ Microbiol; 2005 Apr; 71(4):2199-202. PubMed ID: 15812060 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]