BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 12759809)

  • 21. [Transformation of delta4-3-ketosteroids by free and immobilized cells of Rhodococcus erythropolis actinobacterium].
    Karpova NV; Andriushina VA; Iaderets VV; Druzhinina AV; Stytsenko TS; Shaskol'skiĭ BL; Lozinskiĭ VI; Khi LD; Voĭshvillo NE
    Prikl Biokhim Mikrobiol; 2011; 47(4):429-35. PubMed ID: 21950117
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microbial transformations of pergolide to pergolide sulfoxide and pergolide sulfone.
    Smith RV; Davis PJ; Kerr KM
    J Pharm Sci; 1983 Jul; 72(7):733-6. PubMed ID: 6684155
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Resolution of methyl nonactate by Rhodococcus erythropolis under aerobic and anaerobic conditions.
    Nikodinovic J; Dinges JM; Bergmeier SC; McMills MC; Wright DL; Priestley ND
    Org Lett; 2006 Feb; 8(3):443-5. PubMed ID: 16435855
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nitrile biotransformations for the efficient synthesis of highly enantiopure 1-arylaziridine-2-carboxylic acid derivatives and their stereoselective ring-opening reactions.
    Wang JY; Wang DX; Zheng QY; Huang ZT; Wang MX
    J Org Chem; 2007 Mar; 72(6):2040-5. PubMed ID: 17286438
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enantioselective dynamic process reduction of α- and β-tetralone and stereoinversion of resulting alcohols in a selected strain culture.
    Janeczko T; Panek A; Swizdor A; Dmochowska-Gładysz J; Kostrzewa-Susłow E
    Curr Microbiol; 2012 Aug; 65(2):189-94. PubMed ID: 22614099
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microbial Flavoprotein Monooxygenases as Mimics of Mammalian Flavin-Containing Monooxygenases for the Enantioselective Preparation of Drug Metabolites.
    Gul T; Krzek M; Permentier HP; Fraaije MW; Bischoff R
    Drug Metab Dispos; 2016 Aug; 44(8):1270-6. PubMed ID: 26984198
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simple Preparation of Rhodococcus erythropolis DSM 44534 as Biocatalyst to Oxidize Diols into the Optically Active Lactones.
    Martinez-Rojas E; Olejniczak T; Neumann K; Garbe LA; Boratyñski F
    Chirality; 2016 Sep; 28(9):623-7. PubMed ID: 27496202
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protein engineering of nirobenzene dioxygenase for enantioselective synthesis of chiral sulfoxides.
    Shainsky J; Bernath-Levin K; Isaschar-Ovdat S; Glaser F; Fishman A
    Protein Eng Des Sel; 2013 May; 26(5):335-45. PubMed ID: 23442445
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Protein engineering of toluene monooxygenases for synthesis of chiral sulfoxides.
    Feingersch R; Shainsky J; Wood TK; Fishman A
    Appl Environ Microbiol; 2008 Mar; 74(5):1555-66. PubMed ID: 18192418
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stereospecific sulfoxidation by toluene and naphthalene dioxygenases.
    Lee K; Brand JM; Gibson DT
    Biochem Biophys Res Commun; 1995 Jul; 212(1):9-15. PubMed ID: 7612022
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biotransformation of beta-myrcene to geraniol by a strain of Rhodococcus erythropolis isolated by selective enrichment from hop plants.
    Thompson ML; Marriott R; Dowle A; Grogan G
    Appl Microbiol Biotechnol; 2010 Jan; 85(3):721-30. PubMed ID: 19707757
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biotransformation of geraniol by Rhodococcus sp. strain GR3.
    Chatterjee T
    Biotechnol Appl Biochem; 2004 Jun; 39(Pt 3):303-6. PubMed ID: 15154841
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tyrosinase catalyzes asymmetric sulfoxidation.
    Pievo R; Gullotti M; Monzani E; Casella L
    Biochemistry; 2008 Mar; 47(11):3493-8. PubMed ID: 18293936
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biotransformation of organic sulfides.
    Holland HL
    Nat Prod Rep; 2001 Apr; 18(2):171-81. PubMed ID: 11336287
    [No Abstract]   [Full Text] [Related]  

  • 35. Microbial oxidation of oleic acid.
    el-Sharkawy SH; Yang W; Dostal L; Rosazza JP
    Appl Environ Microbiol; 1992 Jul; 58(7):2116-22. PubMed ID: 1637152
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Formation of optically active sulfoxides in the metabolism of p-thioanisidine].
    Kexel H; Schmidt HL
    Biochem Pharmacol; 1972 Apr; 21(7):1009-17. PubMed ID: 5039747
    [No Abstract]   [Full Text] [Related]  

  • 37. Asymmetric Sulfoxidation of Thioether Catalyzed by Soybean Pod Shell Peroxidase to Form Enantiopure Sulfoxide in Water-in-Oil Microemulsions: A Kinetic Model.
    Li H; Deng Y; Du S; Liu C; Li K; Xue X; Xu H; Zhang Y; Yi T; Gao X
    Chem Asian J; 2021 Aug; 16(15):2075-2086. PubMed ID: 34121354
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dioxygenase-catalysed oxidation of alkylaryl sulfides: sulfoxidation versus cis-dihydrodiol formation.
    Boyd DR; Sharma ND; Byrne BE; Haughey SA; Kennedy MA; Allen CC
    Org Biomol Chem; 2004 Sep; 2(17):2530-7. PubMed ID: 15326534
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Highly efficient and enantioselective biotransformations of β-lactam carbonitriles and carboxamides and their synthetic applications.
    Leng DH; Wang DX; Huang ZT; Wang MX
    Org Biomol Chem; 2010 Oct; 8(20):4736-43. PubMed ID: 20721414
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The oxidation of alkylaryl sulfides and benzo[b]thiophenes by Escherichia coli cells expressing wild-type and engineered styrene monooxygenase from Pseudomonas putida CA-3.
    Nikodinovic-Runic J; Coulombel L; Francuski D; Sharma ND; Boyd DR; Ferrall RM; O'Connor KE
    Appl Microbiol Biotechnol; 2013 Jun; 97(11):4849-58. PubMed ID: 22890778
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.