These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 12759907)

  • 21. Ab initio wavenumber accurate spectroscopy: 1CH2 and HCN vibrational levels on automatically generated IMLS potential energy surfaces.
    Dawes R; Wagner AF; Thompson DL
    J Phys Chem A; 2009 Apr; 113(16):4709-21. PubMed ID: 19371124
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interpolating moving least-squares methods for fitting potential energy surfaces: a strategy for efficient automatic data point placement in high dimensions.
    Dawes R; Thompson DL; Wagner AF; Minkoff M
    J Chem Phys; 2008 Feb; 128(8):084107. PubMed ID: 18315033
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ab initio potential-energy surfaces for complex, multichannel systems using modified novelty sampling and feedforward neural networks.
    Raff LM; Malshe M; Hagan M; Doughan DI; Rockley MG; Komanduri R
    J Chem Phys; 2005 Feb; 122(8):84104. PubMed ID: 15836017
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficient sampling for ab initio Monte Carlo simulation of molecular clusters using an interpolated potential energy surface.
    Nakayama A; Seki N; Taketsugu T
    J Chem Phys; 2009 Jan; 130(2):024107. PubMed ID: 19154019
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modified Shepard interpolation of gas-surface potential energy surfaces with strict plane group symmetry and translational periodicity.
    Frankcombe TJ; Collins MA; Zhang DH
    J Chem Phys; 2012 Oct; 137(14):144701. PubMed ID: 23061855
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Vibrational energies for the X1A1, A1B1, and B1A1 states of SiH2/SiD2 and related transition probabilities based on global potential energy surfaces.
    Tokue I; Yamasaki K; Nanbu S
    J Chem Phys; 2005 Apr; 122(14):144307. PubMed ID: 15847522
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simultaneous fitting of a potential-energy surface and its corresponding force fields using feedforward neural networks.
    Pukrittayakamee A; Malshe M; Hagan M; Raff LM; Narulkar R; Bukkapatnum S; Komanduri R
    J Chem Phys; 2009 Apr; 130(13):134101. PubMed ID: 19355711
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Generating accurate dipole moment surfaces using modified Shepard interpolation.
    Morris M; Jordan MJ
    J Chem Phys; 2014 May; 140(20):204107. PubMed ID: 24880266
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interpolating moving least-squares methods for fitting potential energy surfaces: an application to the H2CN unimolecular reaction.
    Guo Y; Harding LB; Wagner AF; Minkoff M; Thompson DL
    J Chem Phys; 2007 Mar; 126(10):104105. PubMed ID: 17362059
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modelling potential energy surfaces for small clusters using Shepard interpolation with Gaussian-form nodal functions.
    Wang H; Bettens RPA
    Phys Chem Chem Phys; 2019 Feb; 21(8):4513-4522. PubMed ID: 30735214
    [TBL] [Abstract][Full Text] [Related]  

  • 31. "Plug-and-Play" potentials: Investigating quantum effects in (H2)2-Li(+)-benzene.
    D'Arcy JH; Kolmann SJ; Jordan MJ
    J Chem Phys; 2015 Aug; 143(7):074311. PubMed ID: 26298138
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interpolating moving least-squares methods for fitting potential energy surfaces: Analysis of an application to a six-dimensional system.
    Maisuradze GG; Kawano A; Thompson DL; Wagner AF; Minkoff M
    J Chem Phys; 2004 Dec; 121(21):10329-38. PubMed ID: 15549910
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The vibrational structure of the X 1A1 - A 1B1 and A 1B1 - B 1A1 band systems of GeH2/GeD2 based on global potential energy surfaces.
    Tokue I; Ebina S; Kanai M; Nanbu S
    J Chem Phys; 2007 Jan; 126(4):044313. PubMed ID: 17286476
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interpolating moving least-squares methods for fitting potential energy surfaces: applications to classical dynamics calculations.
    Guo Y; Kawano A; Thompson DL; Wagner AF; Minkoff M
    J Chem Phys; 2004 Sep; 121(11):5091-7. PubMed ID: 15352800
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fast Shepard interpolation on graphics processing units: potential energy surfaces and dynamics for H + CH4 → H2 + CH3.
    Welsch R; Manthe U
    J Chem Phys; 2013 Apr; 138(16):164118. PubMed ID: 23635122
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interpolating moving least-squares methods for fitting potential-energy surfaces: further improvement of efficiency via cutoff strategies.
    Kawano A; Tokmakov IV; Thompson DL; Wagner AF; Minkoff M
    J Chem Phys; 2006 Feb; 124(5):054105. PubMed ID: 16468849
    [TBL] [Abstract][Full Text] [Related]  

  • 37. State-to-state reactive differential cross sections for the H+H2-->H2+H reaction on five different potential energy surfaces employing a new quantum wavepacket computer code: DIFFREALWAVE.
    Hankel M; Smith SC; Allan RJ; Gray SK; Balint-Kurti GG
    J Chem Phys; 2006 Oct; 125(16):164303. PubMed ID: 17092069
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A hierarchical construction scheme for accurate potential energy surface generation: an application to the F+H2 reaction.
    Fu B; Xu X; Zhang DH
    J Chem Phys; 2008 Jul; 129(1):011103. PubMed ID: 18624461
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantum and classical studies of the O(3P) + H2(v = 0-3,j = 0) --> OH + H reaction using benchmark potential surfaces.
    Braunstein M; Adler-Golden S; Maiti B; Schatz GC
    J Chem Phys; 2004 Mar; 120(9):4316-23. PubMed ID: 15268601
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modified Shepard interpolation method applied to trapping mediated adsorption dynamics.
    Abufager PN; Crespos C; Busnengo HF
    Phys Chem Chem Phys; 2007 Jun; 9(18):2258-65. PubMed ID: 17487323
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.