BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 12760420)

  • 1. Isolating substrates for an engineered alpha-lytic protease by phage display.
    Lien S; Francis GL; Graham LD; Wallace JC
    J Protein Chem; 2003 Feb; 22(2):155-66. PubMed ID: 12760420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substrate phage: selection of protease substrates by monovalent phage display.
    Matthews DJ; Wells JA
    Science; 1993 May; 260(5111):1113-7. PubMed ID: 8493554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Linkers for improved cleavage of fusion proteins with an engineered alpha-lytic protease.
    Lien S; Milner SJ; Graham LD; Wallace JC; Francis GL
    Biotechnol Bioeng; 2001 Aug; 74(4):335-43. PubMed ID: 11410858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Furilisin: a variant of subtilisin BPN' engineered for cleaving tribasic substrates.
    Ballinger MD; Tom J; Wells JA
    Biochemistry; 1996 Oct; 35(42):13579-85. PubMed ID: 8885837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of a novel peptide substrate of HSV-1 protease using substrate phage display.
    O'Boyle DR; Pokornowski KA; McCann PJ; Weinheimer SP
    Virology; 1997 Sep; 236(2):338-47. PubMed ID: 9325241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A survey of furin substrate specificity using substrate phage display.
    Matthews DJ; Goodman LJ; Gorman CM; Wells JA
    Protein Sci; 1994 Aug; 3(8):1197-205. PubMed ID: 7987214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Display of active subtilisin 309 on phage: analysis of parameters influencing the selection of subtilisin variants with changed substrate specificity from libraries using phosphonylating inhibitors.
    Legendre D; Laraki N; Gräslund T; Bjørnvad ME; Bouchet M; Nygren PA; Borchert TV; Fastrez J
    J Mol Biol; 2000 Feb; 296(1):87-102. PubMed ID: 10656819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Designing subtilisin BPN' to cleave substrates containing dibasic residues.
    Ballinger MD; Tom J; Wells JA
    Biochemistry; 1995 Oct; 34(41):13312-9. PubMed ID: 7577915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a Substrate Identification Method for Human Scp1 Phosphatase Using Phosphorylation Mimic Phage Display.
    Otsubo K; Yoneda T; Kaneko A; Yagi S; Furukawa K; Chuman Y
    Protein Pept Lett; 2018; 25(1):76-83. PubMed ID: 29210629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of the substrate specificity of Factor VII activating protease (FSAP) and design of specific and sensitive peptide substrates.
    Kara E; Manna D; Løset GÅ; Schneider EL; Craik CS; Kanse S
    Thromb Haemost; 2017 Aug; 117(9):1750-1760. PubMed ID: 28726978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrate specificity of the Escherichia coli outer membrane protease OmpT.
    McCarter JD; Stephens D; Shoemaker K; Rosenberg S; Kirsch JF; Georgiou G
    J Bacteriol; 2004 Sep; 186(17):5919-25. PubMed ID: 15317797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selection of Streptomyces griseus protease B mutants with desired alterations in primary specificity using a library screening strategy.
    Sidhu SS; Borgford TJ
    J Mol Biol; 1996 Mar; 257(2):233-45. PubMed ID: 8609620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering, characterization and phage display of hepatitis C virus NS3 protease and NS4A cofactor peptide as a single-chain protein.
    Dimasi N; Pasquo A; Martin F; Di Marco S; Steinkühler C; Cortese R; Sollazzo M
    Protein Eng; 1998 Dec; 11(12):1257-65. PubMed ID: 9930676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cleavage specificity of the subtilisin-like protease C1 from soybean.
    Boyd PM; Barnaby N; Tan-Wilson A; Wilson KA
    Biochim Biophys Acta; 2002 Apr; 1596(2):269-82. PubMed ID: 12007608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Significance of hydrophobic S4-P4 interactions in subtilisin 309 from Bacillus lentus.
    Bech LM; Sørensen SB; Breddam K
    Biochemistry; 1993 Mar; 32(11):2845-52. PubMed ID: 8457550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selection of peptides with surface affinity for alpha-chymotrypsin using a phage display library.
    Krook M; Lindbladh C; Birnbaum S; Naess H; Eriksen JA; Mosbach K
    J Chromatogr A; 1995 Sep; 711(1):119-28. PubMed ID: 7496483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification and characterization of S1 mutants of alpha-lytic protease having altered catalytic properties.
    Haggett KD; Graham LD; Milner SJ; Whittaker RG
    Arch Biochem Biophys; 1994 Oct; 314(1):132-41. PubMed ID: 7944385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein engineering of the high-alkaline serine protease PB92 from Bacillus alcalophilus: functional and structural consequences of mutation at the S4 substrate binding pocket.
    Teplyakov AV; van der Laan JM; Lammers AA; Kelders H; Kalk KH; Misset O; Mulleners LJ; Dijkstra BW
    Protein Eng; 1992 Jul; 5(5):413-20. PubMed ID: 1518789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of efficiently cleaved substrates for HIV-1 protease using a phage display library and use in inhibitor development.
    Beck ZQ; Hervio L; Dawson PE; Elder JH; Madison EL
    Virology; 2000 Sep; 274(2):391-401. PubMed ID: 10964781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cleavage specificity of cucumisin, a serine protease, with synthetic substrates.
    Arima K; Yonezawa H; Uchikoba T; Shimada M; Kaneda M
    Phytochemistry; 2000 Jun; 54(5):451-4. PubMed ID: 10939347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.