These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

455 related articles for article (PubMed ID: 12761065)

  • 21. ToolShop: prerelease inspections for protein structure prediction servers.
    Rychlewski L
    Bioinformatics; 2001 Dec; 17(12):1240-1. PubMed ID: 11751239
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rapid 3D protein structure database searching using information retrieval techniques.
    Aung Z; Tan KL
    Bioinformatics; 2004 May; 20(7):1045-52. PubMed ID: 14962928
    [TBL] [Abstract][Full Text] [Related]  

  • 23. LiveBench-2: large-scale automated evaluation of protein structure prediction servers.
    Bujnicki JM; Elofsson A; Fischer D; Rychlewski L
    Proteins; 2001; Suppl 5():184-91. PubMed ID: 11835496
    [TBL] [Abstract][Full Text] [Related]  

  • 24. MetaPSICOV: combining coevolution methods for accurate prediction of contacts and long range hydrogen bonding in proteins.
    Jones DT; Singh T; Kosciolek T; Tetchner S
    Bioinformatics; 2015 Apr; 31(7):999-1006. PubMed ID: 25431331
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protein structure prediction using deep learning distance and hydrogen-bonding restraints in CASP14.
    Zheng W; Li Y; Zhang C; Zhou X; Pearce R; Bell EW; Huang X; Zhang Y
    Proteins; 2021 Dec; 89(12):1734-1751. PubMed ID: 34331351
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient recognition of folds in protein 3D structures by the improved PRIDE algorithm.
    Gáspári Z; Vlahovicek K; Pongor S
    Bioinformatics; 2005 Aug; 21(15):3322-3. PubMed ID: 15914542
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cysteine separations profiles on protein sequences infer disulfide connectivity.
    Zhao E; Liu HL; Tsai CH; Tsai HK; Chan CH; Kao CY
    Bioinformatics; 2005 Apr; 21(8):1415-20. PubMed ID: 15585533
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bioinformatics methods to predict protein structure and function. A practical approach.
    Edwards YJ; Cottage A
    Mol Biotechnol; 2003 Feb; 23(2):139-66. PubMed ID: 12632698
    [TBL] [Abstract][Full Text] [Related]  

  • 29. FFAS03: a server for profile--profile sequence alignments.
    Jaroszewski L; Rychlewski L; Li Z; Li W; Godzik A
    Nucleic Acids Res; 2005 Jul; 33(Web Server issue):W284-8. PubMed ID: 15980471
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improving the accuracy of protein secondary structure prediction using structural alignment.
    Montgomerie S; Sundararaj S; Gallin WJ; Wishart DS
    BMC Bioinformatics; 2006 Jun; 7():301. PubMed ID: 16774686
    [TBL] [Abstract][Full Text] [Related]  

  • 31. GOR V server for protein secondary structure prediction.
    Sen TZ; Jernigan RL; Garnier J; Kloczkowski A
    Bioinformatics; 2005 Jun; 21(11):2787-8. PubMed ID: 15797907
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Designing succinct structural alphabets.
    Li SC; Bu D; Gao X; Xu J; Li M
    Bioinformatics; 2008 Jul; 24(13):i182-9. PubMed ID: 18586712
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improving sequence-based fold recognition by using 3D model quality assessment.
    Pettitt CS; McGuffin LJ; Jones DT
    Bioinformatics; 2005 Sep; 21(17):3509-15. PubMed ID: 15955780
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Application of protein structure alignments to iterated hidden Markov model protocols for structure prediction.
    Scheeff ED; Bourne PE
    BMC Bioinformatics; 2006 Sep; 7():410. PubMed ID: 16970830
    [TBL] [Abstract][Full Text] [Related]  

  • 35. FFAS-3D: improving fold recognition by including optimized structural features and template re-ranking.
    Xu D; Jaroszewski L; Li Z; Godzik A
    Bioinformatics; 2014 Mar; 30(5):660-7. PubMed ID: 24130308
    [TBL] [Abstract][Full Text] [Related]  

  • 36. FoldIndex: a simple tool to predict whether a given protein sequence is intrinsically unfolded.
    Prilusky J; Felder CE; Zeev-Ben-Mordehai T; Rydberg EH; Man O; Beckmann JS; Silman I; Sussman JL
    Bioinformatics; 2005 Aug; 21(16):3435-8. PubMed ID: 15955783
    [TBL] [Abstract][Full Text] [Related]  

  • 37. iFC²: an integrated web-server for improved prediction of protein structural class, fold type, and secondary structure content.
    Chen K; Stach W; Homaeian L; Kurgan L
    Amino Acids; 2011 Mar; 40(3):963-73. PubMed ID: 20730460
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Five hierarchical levels of sequence-structure correlation in proteins.
    Bystroff C; Shao Y; Yuan X
    Appl Bioinformatics; 2004; 3(2-3):97-104. PubMed ID: 15693735
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Accurate prediction of stability changes in protein mutants by combining machine learning with structure based computational mutagenesis.
    Masso M; Vaisman II
    Bioinformatics; 2008 Sep; 24(18):2002-9. PubMed ID: 18632749
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recognizing the fold of a protein structure.
    Harrison A; Pearl F; Sillitoe I; Slidel T; Mott R; Thornton J; Orengo C
    Bioinformatics; 2003 Sep; 19(14):1748-59. PubMed ID: 14512345
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.