These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 12761186)

  • 21. The catalytic mechanism of protein tyrosine phosphatases revisited.
    Kolmodin K; Aqvist J
    FEBS Lett; 2001 Jun; 498(2-3):208-13. PubMed ID: 11412859
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Compound Molecular Logic in Accessing the Active Site of Mycobacterium tuberculosis Protein Tyrosine Phosphatase B.
    Morrell TE; Rafalska-Metcalf IU; Yang H; Chu JW
    J Am Chem Soc; 2018 Nov; 140(44):14747-14752. PubMed ID: 30301350
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural stability of human protein tyrosine phosphatase ρ catalytic domain: effect of point mutations.
    Pasquo A; Consalvi V; Knapp S; Alfano I; Ardini M; Stefanini S; Chiaraluce R
    PLoS One; 2012; 7(2):e32555. PubMed ID: 22389709
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computational modeling of the rate limiting step in low molecular weight protein tyrosine phosphatase.
    Kolmodin K; Aqvist J
    FEBS Lett; 1999 Aug; 456(2):301-5. PubMed ID: 10456328
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intramolecular interactions in protein tyrosine phosphatase RPTPmu: kinetic evidence.
    Aricescu AR; Fulga TA; Cismasiu V; Goody RS; Szedlacsek SE
    Biochem Biophys Res Commun; 2001 Jan; 280(1):319-27. PubMed ID: 11162517
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Purification and characterization of protein tyrosine phosphatase PTP-MEG2.
    Qi Y; Zhao R; Cao H; Sui X; Krantz SB; Zhao ZJ
    J Cell Biochem; 2002; 86(1):79-89. PubMed ID: 12112018
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chemical and mechanistic approaches to the study of protein tyrosine phosphatases.
    Zhang ZY
    Acc Chem Res; 2003 Jun; 36(6):385-92. PubMed ID: 12809524
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kinetic isotope effects in the characterization of catalysis by protein tyrosine phosphatases.
    Hengge AC
    Biochim Biophys Acta; 2015 Nov; 1854(11):1768-75. PubMed ID: 25840000
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced catalytic site thermal stability of cold-adapted esterase EstK by a W208Y mutation.
    Boyineni J; Kim J; Kang BS; Lee C; Jang SH
    Biochim Biophys Acta; 2014 Jun; 1844(6):1076-82. PubMed ID: 24667115
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improving the catalytic, kinetic and thermodynamic properties of Bacillus subtilis KU710517 milk clotting enzyme via conjugation with polyethylene glycol.
    Wehaidy HR; Abdel-Naby MA; Shousha WG; Elmallah MIY; Shawky MM
    Int J Biol Macromol; 2018 May; 111():296-301. PubMed ID: 29309864
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Density functional study of the mechanism of a tyrosine phosphatase: I. Intermediate formation.
    Asthagiri D; Dillet V; Liu T; Noodleman L; Van Etten RL; Bashford D
    J Am Chem Soc; 2002 Aug; 124(34):10225-35. PubMed ID: 12188687
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Expression, purification, and crystallization of the catalytic domain of protein tyrosine phosphatase SHP-1.
    Liang X; Meng W; Niu T; Zhao Z; Zhou GW
    J Struct Biol; 1997 Nov; 120(2):201-3. PubMed ID: 9417985
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Conservative tryptophan mutants of the protein tyrosine phosphatase YopH exhibit impaired WPD-loop function and crystallize with divanadate esters in their active sites.
    Moise G; Gallup NM; Alexandrova AN; Hengge AC; Johnson SJ
    Biochemistry; 2015 Oct; 54(42):6490-500. PubMed ID: 26445170
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Key amino acid residues conferring enhanced enzyme activity at cold temperatures in an Antarctic polyextremophilic β-galactosidase.
    Laye VJ; Karan R; Kim JM; Pecher WT; DasSarma P; DasSarma S
    Proc Natl Acad Sci U S A; 2017 Nov; 114(47):12530-12535. PubMed ID: 29109294
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Allosteric inhibition of protein tyrosine phosphatase 1B.
    Wiesmann C; Barr KJ; Kung J; Zhu J; Erlanson DA; Shen W; Fahr BJ; Zhong M; Taylor L; Randal M; McDowell RS; Hansen SK
    Nat Struct Mol Biol; 2004 Aug; 11(8):730-7. PubMed ID: 15258570
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure of the hematopoietic tyrosine phosphatase (HePTP) catalytic domain: structure of a KIM phosphatase with phosphate bound at the active site.
    Mustelin T; Tautz L; Page R
    J Mol Biol; 2005 Nov; 354(1):150-63. PubMed ID: 16226275
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Energetics of peptide recognition by the second PDZ domain of human protein tyrosine phosphatase 1E.
    Milev S; Bjelić S; Georgiev O; Jelesarov I
    Biochemistry; 2007 Jan; 46(4):1064-78. PubMed ID: 17240990
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The structure of the membrane distal phosphatase domain of RPTPalpha reveals interdomain flexibility and an SH2 domain interaction region.
    Sonnenburg ED; Bilwes A; Hunter T; Noel JP
    Biochemistry; 2003 Jul; 42(26):7904-14. PubMed ID: 12834342
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Residue 259 in protein-tyrosine phosphatase PTP1B and PTPalpha determines the flexibility of glutamine 262.
    Peters GH; Iversen LF; Andersen HS; Møller NP; Olsen OH
    Biochemistry; 2004 Jul; 43(26):8418-28. PubMed ID: 15222753
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enzyme surface rigidity tunes the temperature dependence of catalytic rates.
    Isaksen GV; Åqvist J; Brandsdal BO
    Proc Natl Acad Sci U S A; 2016 Jul; 113(28):7822-7. PubMed ID: 27354533
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.