These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 1276126)

  • 1. Statistical interpretation of fluorescence energy transfer measurements in macromolecular systems.
    Hillel Z; Wu CW
    Biochemistry; 1976 May; 15(10):2105-13. PubMed ID: 1276126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial relationship of the sigma subunit and the rifampicin binding site in RNA polymerase of Escherichia coli.
    Wu CW; Yarbrough LR; Wu FY; Hillel Z
    Biochemistry; 1976 May; 15(10):2097-104. PubMed ID: 776217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence energy transfer studies on lima bean lectin. Distance between the subunit hydrophobic binding site and the thiol group essential for carbohydrate binding.
    Kella NK; Roberts DD; Shafer JA; Goldstein IJ
    J Biol Chem; 1984 Apr; 259(8):4777-81. PubMed ID: 6715322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous determination of intramolecular distance distributions and conformational dynamics by global analysis of energy transfer measurements.
    Beechem JM; Haas E
    Biophys J; 1989 Jun; 55(6):1225-36. PubMed ID: 2765658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distances between active site probes in glutamine synthetase from Escherichia coli: fluorescence energy transfer in free and in stacked dodecamers.
    Maurizi MR; Kasprzyk PG; Ginsburg A
    Biochemistry; 1986 Jan; 25(1):141-51. PubMed ID: 2869781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of a distribution of separations upon intramolecular distances in biopolymers, as determined by radiationless energy transfer.
    Albaugh S; Lan JQ; Steiner RF
    Biophys Chem; 1989 Mar; 33(1):71-6. PubMed ID: 2720092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An investigation of the SH1-SH2 and SH1-ATPase distances in myosin subfragment-1 by resonance energy transfer using nanosecond fluorimetry.
    Cheung HC; Gonsoulin F; Garland F
    Biochim Biophys Acta; 1985 Nov; 832(1):52-62. PubMed ID: 2932161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blinking fluorescence of single donor-acceptor pairs: important role of "dark'' states in resonance energy transfer via singlet levels.
    Osad'ko IS; Shchukina AL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061907. PubMed ID: 23005127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The orientational freedom of molecular probes. The orientation factor in intramolecular energy transfer.
    Dale RE; Eisinger J; Blumberg WE
    Biophys J; 1979 May; 26(2):161-93. PubMed ID: 262414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving lanthanide-based resonance energy transfer detection by increasing donor-acceptor distances.
    Vogel KW; Vedvik KL
    J Biomol Screen; 2006 Jun; 11(4):439-43. PubMed ID: 16751339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Excitation energy transfer studies on the proximity between SH1 and the adenosinetriphosphatase site in myosin subfragment 1.
    Tao T; Lamkin M
    Biochemistry; 1981 Aug; 20(17):5051-5. PubMed ID: 6457630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of the distance change between cysteine-457 and the nucleotide binding site when sodium pump changes conformation from E1 to E2 by fluorescence energy transfer measurements.
    Lin SH; Faller LD
    Biochemistry; 1996 Jun; 35(25):8419-28. PubMed ID: 8679600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of resonance energy transfer in model membranes: role of orientational effects.
    Domanov YA; Gorbenko GP
    Biophys Chem; 2002 Oct; 99(2):143-54. PubMed ID: 12377365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frequency-domain fluorescence spectroscopy resolves the location of maleimide-directed spectroscopic probes within the tertiary structure of the Ca-ATPase of sarcoplasmic reticulum.
    Bigelow DJ; Inesi G
    Biochemistry; 1991 Feb; 30(8):2113-25. PubMed ID: 1825607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gauging the flexibility of fluorescent markers for the interpretation of fluorescence resonance energy transfer.
    Rindermann JJ; Akhtman Y; Richardson J; Brown T; Lagoudakis PG
    J Am Chem Soc; 2011 Jan; 133(2):279-85. PubMed ID: 21155557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-resolved energy transfer measurements of donor-acceptor distance distributions and intramolecular flexibility of a CCHH zinc finger peptide.
    Eis PS; Lakowicz JR
    Biochemistry; 1993 Aug; 32(31):7981-93. PubMed ID: 8347602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using structure-function constraints in FRET studies of large macromolecular complexes.
    Bujalowski WM; Jezewska MJ
    Methods Mol Biol; 2012; 875():135-64. PubMed ID: 22573439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The estimation of distances between specific backbone-labeled sites in DNA using fluorescence resonance energy transfer.
    Ozaki H; McLaughlin LW
    Nucleic Acids Res; 1992 Oct; 20(19):5205-14. PubMed ID: 1408835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurements of internal distance changes of the 30S ribosome using FRET with multiple donor-acceptor pairs: quantitative spectroscopic methods.
    Majumdar ZK; Hickerson R; Noller HF; Clegg RM
    J Mol Biol; 2005 Sep; 351(5):1123-45. PubMed ID: 16055154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Orientation factor in steady-state and time-resolved resonance energy transfer measurements.
    Wu P; Brand L
    Biochemistry; 1992 Sep; 31(34):7939-47. PubMed ID: 1510980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.