BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 12761299)

  • 1. Compositional changes in RNA, DNA and proteins for bacterial adaptation to higher and lower temperatures.
    Nakashima H; Fukuchi S; Nishikawa K
    J Biochem; 2003 Apr; 133(4):507-13. PubMed ID: 12761299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Patterns of temperature adaptation in proteins from the bacteria Deinococcus radiodurans and Thermus thermophilus.
    McDonald JH
    Mol Biol Evol; 2001 May; 18(5):741-9. PubMed ID: 11319258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein surface amino acid compositions distinctively differ between thermophilic and mesophilic bacteria.
    Fukuchi S; Nishikawa K
    J Mol Biol; 2001 Jun; 309(4):835-43. PubMed ID: 11399062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of tRNA composition and folding in psychrophilic, mesophilic and thermophilic genomes: indications for thermal adaptation.
    Dutta A; Chaudhuri K
    FEMS Microbiol Lett; 2010 Apr; 305(2):100-8. PubMed ID: 20659165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative analysis of DNA-binding proteins between thermophilic and mesophilic bacteria.
    Fujita M; Kanehisa M
    Genome Inform; 2005; 16(1):174-81. PubMed ID: 16362920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unique amino acid composition of proteins in halophilic bacteria.
    Fukuchi S; Yoshimune K; Wakayama M; Moriguchi M; Nishikawa K
    J Mol Biol; 2003 Mar; 327(2):347-57. PubMed ID: 12628242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Affinity of ribosomal protein S8 from mesophilic and (hyper)thermophilic archaea and bacteria for 16S rRNA correlates with the growth temperatures of the organisms.
    Gruber T; Köhrer C; Lung B; Shcherbakov D; Piendl W
    FEBS Lett; 2003 Aug; 549(1-3):123-8. PubMed ID: 12914937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amino acid coupling patterns in thermophilic proteins.
    Liang HK; Huang CM; Ko MT; Hwang JK
    Proteins; 2005 Apr; 59(1):58-63. PubMed ID: 15688447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An aspartate aminotransferase from an extremely thermophilic bacterium, Thermus thermophilus HB8.
    Okamoto A; Kato R; Masui R; Yamagishi A; Oshima T; Kuramitsu S
    J Biochem; 1996 Jan; 119(1):135-44. PubMed ID: 8907187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure based approach for understanding organism specific recognition of protein-RNA complexes.
    Nagarajan R; Chothani SP; Ramakrishnan C; Sekijima M; Gromiha MM
    Biol Direct; 2015 Mar; 10():8. PubMed ID: 25886642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein and DNA sequence determinants of thermophilic adaptation.
    Zeldovich KB; Berezovsky IN; Shakhnovich EI
    PLoS Comput Biol; 2007 Jan; 3(1):e5. PubMed ID: 17222055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [A comparison of amino acid composition of proteins from thermophiles and mesophiles].
    Lu B; Wang G; Huang P
    Wei Sheng Wu Xue Bao; 1998 Feb; 38(1):20-5. PubMed ID: 12549384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein Thermostability Is Owing to Their Preferences to Non-Polar Smaller Volume Amino Acids, Variations in Residual Physico-Chemical Properties and More Salt-Bridges.
    Panja AS; Bandopadhyay B; Maiti S
    PLoS One; 2015; 10(7):e0131495. PubMed ID: 26177372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular interactions within the halophilic, thermophilic, and mesophilic prokaryotic ribosomal complexes: clues to environmental adaptation.
    Mallik S; Kundu S
    J Biomol Struct Dyn; 2015; 33(3):639-56. PubMed ID: 24697502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amino acid composition of genomes, lifestyles of organisms, and evolutionary trends: a global picture with correspondence analysis.
    Tekaia F; Yeramian E; Dujon B
    Gene; 2002 Sep; 297(1-2):51-60. PubMed ID: 12384285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological analysis of the stringent response elicited in an extreme thermophilic bacterium, Thermus thermophilus.
    Kasai K; Nishizawa T; Takahashi K; Hosaka T; Aoki H; Ochi K
    J Bacteriol; 2006 Oct; 188(20):7111-22. PubMed ID: 17015650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermostable repair enzyme for oxidative DNA damage from extremely thermophilic bacterium, Thermus thermophilus HB8.
    Mikawa T; Kato R; Sugahara M; Kuramitsu S
    Nucleic Acids Res; 1998 Feb; 26(4):903-10. PubMed ID: 9461446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptation to environmental temperature is a major determinant of molecular evolutionary rates in archaea.
    Groussin M; Gouy M
    Mol Biol Evol; 2011 Sep; 28(9):2661-74. PubMed ID: 21498602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HU histone-like DNA-binding protein from Thermus thermophilus: structural and evolutionary analyses.
    Papageorgiou AC; Adam PS; Stavros P; Nounesis G; Meijers R; Petratos K; Vorgias CE
    Extremophiles; 2016 Sep; 20(5):695-709. PubMed ID: 27342116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermus thermophilus proteins that are differentially expressed in response to growth temperature and their implication in thermoadaptation.
    Li H; Ji X; Zhou Z; Wang Y; Zhang X
    J Proteome Res; 2010 Feb; 9(2):855-64. PubMed ID: 20017569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.