These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 12761299)

  • 21. Structure-dependent relationships between growth temperature of prokaryotes and the amino acid frequency in their proteins.
    Saelensminde G; Halskau Ø; Helland R; Willassen NP; Jonassen I
    Extremophiles; 2007 Jul; 11(4):585-96. PubMed ID: 17429573
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparative study of the phenylalanyl-tRNA synthetases from Escherichia coli and Thermus thermophlus by the tritium topography method.
    Bobkova EV; Gedrovitch AV; Ankilova VN; Lavrik OI; Baratova LA; Shishkov AV
    Biochem Int; 1990; 20(5):1001-9. PubMed ID: 2190556
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Activity-stability relationships revisited in blue oxidases catalyzing electron transfer at extreme temperatures.
    Roulling F; Godin A; Cipolla A; Collins T; Miyazaki K; Feller G
    Extremophiles; 2016 Sep; 20(5):621-9. PubMed ID: 27315165
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Amino-acid interactions in psychrophiles, mesophiles, thermophiles, and hyperthermophiles: insights from the quasi-chemical approximation.
    Goldstein RA
    Protein Sci; 2007 Sep; 16(9):1887-95. PubMed ID: 17766385
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Patterns of temperature adaptation in proteins from Methanococcus and Bacillus.
    McDonald JH; Grasso AM; Rejto LK
    Mol Biol Evol; 1999 Dec; 16(12):1785-90. PubMed ID: 10605119
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparative genomics of Thermus thermophilus and Deinococcus radiodurans: divergent routes of adaptation to thermophily and radiation resistance.
    Omelchenko MV; Wolf YI; Gaidamakova EK; Matrosova VY; Vasilenko A; Zhai M; Daly MJ; Koonin EV; Makarova KS
    BMC Evol Biol; 2005 Oct; 5():57. PubMed ID: 16242020
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular mechanisms of adaptation emerging from the physics and evolution of nucleic acids and proteins.
    Goncearenco A; Ma BG; Berezovsky IN
    Nucleic Acids Res; 2014 Mar; 42(5):2879-92. PubMed ID: 24371267
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Environment specific substitution tables for thermophilic proteins.
    Mizuguchi K; Sele M; Cubellis MV
    BMC Bioinformatics; 2007 Mar; 8 Suppl 1(Suppl 1):S15. PubMed ID: 17430559
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermodynamic system drift in protein evolution.
    Hart KM; Harms MJ; Schmidt BH; Elya C; Thornton JW; Marqusee S
    PLoS Biol; 2014 Nov; 12(11):e1001994. PubMed ID: 25386647
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mismatch DNA recognition protein from an extremely thermophilic bacterium, Thermus thermophilus HB8.
    Takamatsu S; Kato R; Kuramitsu S
    Nucleic Acids Res; 1996 Feb; 24(4):640-7. PubMed ID: 8604304
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protein stability and enzyme activity at extreme biological temperatures.
    Feller G
    J Phys Condens Matter; 2010 Aug; 22(32):323101. PubMed ID: 21386475
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermostable proteins bioprocesses: The activity of restriction endonuclease-methyltransferase from Thermus thermophilus (RM.TthHB27I) cloned in Escherichia coli is critically affected by the codon composition of the synthetic gene.
    Krefft D; Papkov A; Zylicz-Stachula A; Skowron PM
    PLoS One; 2017; 12(10):e0186633. PubMed ID: 29040308
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adaptation of model proteins from cold to hot environments involves continuous and small adjustments of average parameters related to amino acid composition.
    De Vendittis E; Castellano I; Cotugno R; Ruocco MR; Raimo G; Masullo M
    J Theor Biol; 2008 Jan; 250(1):156-71. PubMed ID: 17950361
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Specific amino acids responsible for the cold adaptedness of Micrococcus antarcticus β-glucosidase BglU.
    Miao LL; Fan HX; Qu J; Liu Y; Liu ZP
    Appl Microbiol Biotechnol; 2017 Mar; 101(5):2033-2041. PubMed ID: 27858137
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of proteins from thermophilic and nonthermophilic sources in terms of structural parameters inferred from amino acid composition.
    Singleton R; Middaugh CR; MacElroy RD
    Int J Pept Protein Res; 1977; 10(1):39-50. PubMed ID: 881291
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Protein thermal stability: insights from atomic displacement parameters (B values).
    Parthasarathy S; Murthy MR
    Protein Eng; 2000 Jan; 13(1):9-13. PubMed ID: 10679524
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Uracil content of 16S rRNA of thermophilic and psychrophilic prokaryotes correlates inversely with their optimal growth temperatures.
    Khachane AN; Timmis KN; dos Santos VA
    Nucleic Acids Res; 2005; 33(13):4016-22. PubMed ID: 16030352
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Discrimination of mesophilic and thermophilic proteins using machine learning algorithms.
    Gromiha MM; Suresh MX
    Proteins; 2008 Mar; 70(4):1274-9. PubMed ID: 17876820
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Investigation on the causes of codon and amino acid usages variation between thermophilic Aquifex aeolicus and mesophilic Bacillus subtilis.
    Basak S; Banerjee T; Gupta SK; Ghosh TC
    J Biomol Struct Dyn; 2004 Oct; 22(2):205-14. PubMed ID: 15317481
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On the characterization of the putative S20-thx operon of Thermus thermophilus.
    Leontiadou F; Triantafillidou D; Choli-Papadopoulou T
    Biol Chem; 2001 Jul; 382(7):1001-6. PubMed ID: 11530930
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.