BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 12761391)

  • 1. Insights into dimerization and four-helix bundle formation found by dissection of the dimer interface of the GrpE protein from Escherichia coli.
    Mehl AF; Heskett LD; Jain SS; Demeler B
    Protein Sci; 2003 Jun; 12(6):1205-15. PubMed ID: 12761391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A GrpE mutant containing the NH(2)-terminal "tail" region is able to displace bound polypeptide substrate from DnaK.
    Mehl AF; Heskett LD; Neal KM
    Biochem Biophys Res Commun; 2001 Mar; 282(2):562-9. PubMed ID: 11401497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing dimer interface stabilization within a four-helix bundle of the GrpE protein from Escherichia coli via internal deletion mutants: conversion of a dimer to monomer.
    Mehl AF; U G N; Ahmed Z; Wells A; Spyratos TD
    Int J Biol Macromol; 2011 May; 48(4):627-33. PubMed ID: 21315107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing the stability and mechanism for folding of the GrpE1-112 tetrameric deletion mutant of the GrpE protein from E. coli.
    Mehl AF; Okada K; Dehn SM; Kurian S
    Biochem Biophys Res Commun; 2012 Apr; 420(3):635-8. PubMed ID: 22450325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamic linkage in the GrpE nucleotide exchange factor, a molecular thermosensor.
    Gelinas AD; Toth J; Bethoney KA; Langsetmo K; Stafford WF; Harrison CJ
    Biochemistry; 2003 Aug; 42(30):9050-9. PubMed ID: 12885238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A water mediated electrostatic interaction gives thermal stability to the "tail" region of the GrpE protein from E. coli.
    Mehl AF; Demeler B; Zraikat A
    Protein J; 2007 Jun; 26(4):239-45. PubMed ID: 17203387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermostability of two cyanobacterial GrpE thermosensors.
    Barthel S; Rupprecht E; Schneider D
    Plant Cell Physiol; 2011 Oct; 52(10):1776-85. PubMed ID: 21865302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A structure-based interpretation of E.coli GrpE thermodynamic properties.
    Gelinas AD; Langsetmo K; Toth J; Bethoney KA; Stafford WF; Harrison CJ
    J Mol Biol; 2002 Oct; 323(1):131-42. PubMed ID: 12368105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutational analysis of the energetics of the GrpE.DnaK binding interface: equilibrium association constants by sedimentation velocity analytical ultracentrifugation.
    Gelinas AD; Toth J; Bethoney KA; Stafford WF; Harrison CJ
    J Mol Biol; 2004 May; 339(2):447-58. PubMed ID: 15136046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The heat-sensitive Escherichia coli grpE280 phenotype: impaired interaction of GrpE(G122D) with DnaK.
    Grimshaw JP; Siegenthaler RK; Züger S; Schönfeld HJ; Z'graggen BR; Christen P
    J Mol Biol; 2005 Nov; 353(4):888-96. PubMed ID: 16198374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Folding properties of the nucleotide exchange factor GrpE from Thermus thermophilus: GrpE is a thermosensor that mediates heat shock response.
    Groemping Y; Reinstein J
    J Mol Biol; 2001 Nov; 314(1):167-78. PubMed ID: 11724541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversible redox- and zinc-dependent dimerization of the Escherichia coli fur protein.
    D'Autréaux B; Pecqueur L; Gonzalez de Peredo A; Diederix RE; Caux-Thang C; Tabet L; Bersch B; Forest E; Michaud-Soret I
    Biochemistry; 2007 Feb; 46(5):1329-42. PubMed ID: 17260962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-function analysis of the Escherichia coli GrpE heat shock protein.
    Wu B; Wawrzynow A; Zylicz M; Georgopoulos C
    EMBO J; 1996 Sep; 15(18):4806-16. PubMed ID: 8890154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A beta-sheet peptide inhibitor of E47 dimerization and DNA binding.
    Ghosh I; Chmielewski J
    Chem Biol; 1998 Aug; 5(8):439-45. PubMed ID: 9710566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamic analysis of unfolding and dissociation in lactose repressor protein.
    Barry JK; Matthews KS
    Biochemistry; 1999 May; 38(20):6520-8. PubMed ID: 10350470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GrpE N-terminal domain contributes to the interaction with Dnak and modulates the dynamics of the chaperone substrate binding domain.
    Moro F; Taneva SG; Velázquez-Campoy A; Muga A
    J Mol Biol; 2007 Dec; 374(4):1054-64. PubMed ID: 17976642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The N-terminal domain of the replication initiator protein RepE is a dimerization domain forming a stable dimer.
    Nakamura A; Komori H; Kobayashi G; Kita A; Wada C; Miki K
    Biochem Biophys Res Commun; 2004 Feb; 315(1):10-5. PubMed ID: 15013418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and function of the middle domain of ClpB from Escherichia coli.
    Kedzierska S; Akoev V; Barnett ME; Zolkiewski M
    Biochemistry; 2003 Dec; 42(48):14242-8. PubMed ID: 14640692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NMR structure of the J-domain and the Gly/Phe-rich region of the Escherichia coli DnaJ chaperone.
    Pellecchia M; Szyperski T; Wall D; Georgopoulos C; Wüthrich K
    J Mol Biol; 1996 Jul; 260(2):236-50. PubMed ID: 8764403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating the functional role of a buried interchain aromatic cluster in Escherichia coli GrpE dimer.
    Upadhyay T; Karekar VV; Potteth US; Saraogi I
    Proteins; 2023 Jan; 91(1):108-120. PubMed ID: 35988048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.