BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 12761395)

  • 21. The tRNA-induced conformational activation of human mitochondrial phenylalanyl-tRNA synthetase.
    Klipcan L; Levin I; Kessler N; Moor N; Finarov I; Safro M
    Structure; 2008 Jul; 16(7):1095-104. PubMed ID: 18611382
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ligand co-crystallization of aminoacyl-tRNA synthetases from infectious disease organisms.
    Moen SO; Edwards TE; Dranow DM; Clifton MC; Sankaran B; Van Voorhis WC; Sharma A; Manoil C; Staker BL; Myler PJ; Lorimer DD
    Sci Rep; 2017 Mar; 7(1):223. PubMed ID: 28303005
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of the intrinsic dynamics of aminoacyl-tRNA synthetases.
    Warren N; Strom A; Nicolet B; Albin K; Albrecht J; Bausch B; Dobbe M; Dudek M; Firgens S; Fritsche C; Gunderson A; Heimann J; Her C; Hurt J; Konorev D; Lively M; Meacham S; Rodriguez V; Tadayon S; Trcka D; Yang Y; Bhattacharyya S; Hati S
    Protein J; 2014 Apr; 33(2):184-98. PubMed ID: 24590670
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recognition of non-alpha-amino substrates by pyrrolysyl-tRNA synthetase.
    Kobayashi T; Yanagisawa T; Sakamoto K; Yokoyama S
    J Mol Biol; 2009 Feb; 385(5):1352-60. PubMed ID: 19100747
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Aminoacyl-tRNA synthetases: Structure, function, and drug discovery.
    Rajendran V; Kalita P; Shukla H; Kumar A; Tripathi T
    Int J Biol Macromol; 2018 May; 111():400-414. PubMed ID: 29305884
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Tyrosine tRNA(Q*psiA) from bovine liver. Identification of its sites of interaction with homologous aminoacyl-trna synthetase using chemical modification].
    Kalachniuk LH; Korneliuk OI; Matsuka HKh
    Ukr Biokhim Zh (1978); 1995; 67(5):60-5. PubMed ID: 8830438
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Solution X-ray scattering highlights discrepancies in Plasmodium multi-aminoacyl-tRNA synthetase complexes.
    Jaramillo Ponce JR; Théobald-Dietrich A; Bénas P; Paulus C; Sauter C; Frugier M
    Protein Sci; 2023 Feb; 32(2):e4564. PubMed ID: 36606712
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural insights into the second step of RNA-dependent cysteine biosynthesis in archaea: crystal structure of Sep-tRNA:Cys-tRNA synthase from Archaeoglobus fulgidus.
    Fukunaga R; Yokoyama S
    J Mol Biol; 2007 Jun; 370(1):128-41. PubMed ID: 17512006
    [TBL] [Abstract][Full Text] [Related]  

  • 29. IA, database of known ligands of aminoacyl-tRNA synthetases.
    Torchala M; Hoffmann M
    J Comput Aided Mol Des; 2007 Sep; 21(9):523-5. PubMed ID: 17882381
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Aminoacyl-tRNA Synthetases as Valuable Targets for Antimicrobial Drug Discovery.
    Pang L; Weeks SD; Van Aerschot A
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33578647
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Experimental approaches for investigation of aminoacyl tRNA synthetase phosphorylation.
    Arif A; Jia J; Halawani D; Fox PL
    Methods; 2017 Jan; 113():72-82. PubMed ID: 27729295
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Single amino acid changes in AspRS reveal alternative routes for expanding its tRNA repertoire in vivo.
    Martin F; Barends S; Eriani G
    Nucleic Acids Res; 2004; 32(13):4081-9. PubMed ID: 15289581
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exploring the evolutionary diversity and assembly modes of multi-aminoacyl-tRNA synthetase complexes: lessons from unicellular organisms.
    Laporte D; Huot JL; Bader G; Enkler L; Senger B; Becker HD
    FEBS Lett; 2014 Nov; 588(23):4268-78. PubMed ID: 25315413
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multi-Omics Database Analysis of Aminoacyl-tRNA Synthetases in Cancer.
    Wang J; Vallee I; Dutta A; Wang Y; Mo Z; Liu Z; Cui H; Su AI; Yang XL
    Genes (Basel); 2020 Nov; 11(11):. PubMed ID: 33266490
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis and Biological Evaluation of 1,3-Dideazapurine-Like 7-Amino-5-Hydroxymethyl-Benzimidazole Ribonucleoside Analogues as Aminoacyl-tRNA Synthetase Inhibitors.
    Zhang B; Pang L; Nautiyal M; De Graef S; Gadakh B; Lescrinier E; Rozenski J; Strelkov SV; Weeks SD; Van Aerschot A
    Molecules; 2020 Oct; 25(20):. PubMed ID: 33081246
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The aminoacyl-tRNA synthetase family: modules at work.
    Delarue M; Moras D
    Bioessays; 1993 Oct; 15(10):675-87. PubMed ID: 8274143
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Escherichia coli glutaminyl-tRNA synthetase is electrostatically optimized for binding of its cognate substrates.
    Green DF; Tidor B
    J Mol Biol; 2004 Sep; 342(2):435-52. PubMed ID: 15327945
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Aminoacyl-tRNA synthetases database.
    Szymanski M; Deniziak MA; Barciszewski J
    Nucleic Acids Res; 2001 Jan; 29(1):288-90. PubMed ID: 11125115
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Novel tRNA aminoacylation mechanisms.
    Cathopoulis T; Chuawong P; Hendrickson TL
    Mol Biosyst; 2007 Jun; 3(6):408-18. PubMed ID: 17533454
    [TBL] [Abstract][Full Text] [Related]  

  • 40. MIST, a Novel Approach to Reveal Hidden Substrate Specificity in Aminoacyl-tRNA Synthetases.
    Eriani G; Karam J; Jacinto J; Morris Richard E; Geslain R
    PLoS One; 2015; 10(6):e0130042. PubMed ID: 26067673
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.