These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 1276160)

  • 21. The cytosol-membrane interface of normal and sickle erythrocytes. Effect of hemoglobin deoxygenation and sickling.
    Eisinger J; Flores J; Bookchin RM
    J Biol Chem; 1984 Jun; 259(11):7169-77. PubMed ID: 6725285
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fibers, crystals, and other forms of HbS polymers in deoxygenated sickle erythrocytes.
    Kaperonis AA; Handley DA; Chien S
    Am J Hematol; 1986 Mar; 21(3):269-75. PubMed ID: 3946409
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effects of sickling on ion transport. I. Effect of sickling on potassium transport.
    TOSTESON DC; CARLSEN E; DUNHAM ET
    J Gen Physiol; 1955 Sep; 39(1):31-53. PubMed ID: 13252234
    [TBL] [Abstract][Full Text] [Related]  

  • 24. ESR correlation times of 2,2,6,6-tetramethyl piperidone-N-oxyl (Tempone) in solutions of hemoglobin A and hemoglobin S.
    Beaudoin AG; Mizukami H
    Biochim Biophys Acta; 1978 Jan; 532(1):41-7. PubMed ID: 202329
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The gelation of deoxyhemoglobin S in erythrocytes as detected by transverse water proton relazation measurements.
    Cottam GL; Valentine KM; Yamaoka K; Waterman MR
    Arch Biochem Biophys; 1974 Jun; 162(2):487-92. PubMed ID: 4407362
    [No Abstract]   [Full Text] [Related]  

  • 26. Sickle-cell hemoglobin: fall in osmotic pressure upon deoxygenation.
    Hargens AR; Bowie LJ; Lent D; Carreathers S; Peters RM; Hammel HT; Scholander PF
    Proc Natl Acad Sci U S A; 1980 Jul; 77(7):4310-2. PubMed ID: 6933482
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hemoglobin-water interactions in normal and sickle erythrocytes by proton magnetic resonance T1p measurements.
    Zipp A; Kuntz ID; James TL
    Arch Biochem Biophys; 1977 Jan; 178(2):435-41. PubMed ID: 836043
    [No Abstract]   [Full Text] [Related]  

  • 28. Proton magnetic resonance studies of intracellular water in sickle cells.
    Zipp A; Kuntz ID; Rehfeld SJ; Shohet SB
    FEBS Lett; 1974 Jul; 43(1):9-12. PubMed ID: 4212283
    [No Abstract]   [Full Text] [Related]  

  • 29. Sickle cell disease painful crisis and steady state differentiation by proton magnetic resonance.
    Fernández AA; Cabal CA; Lores MA; Losada J; Pérez ER
    Hemoglobin; 2009; 33(3):206-13. PubMed ID: 19657834
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spin-label studies of membrane-associated denatured hemoglobin in normal and sickle cells.
    Lau PW; Hung C; Minakata K; Schwartz E; Asakura T
    Biochim Biophys Acta; 1979 Apr; 552(3):499-508. PubMed ID: 221019
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Proton NMR T1, T2, and T1 rho relaxation studies of native and reconstituted sarcoplasmic reticulum and phospholipid vesicles.
    Deese AJ; Dratz EA; Hymel L; Fleischer S
    Biophys J; 1982 Jan; 37(1):207-16. PubMed ID: 6459803
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Morphological and submicroscopic comparison of sickle erythrocytes of humans and deer.
    Simpson CF; Taylor WJ
    Ann N Y Acad Sci; 1974 Nov; 241(0):614-22. PubMed ID: 4139922
    [No Abstract]   [Full Text] [Related]  

  • 33. Sickling of nucleated erythroid precursors from patients with sickle cell anemia.
    Hasegawa S; Rodgers GP; Dwyer N; Noguchi CT; Blanchette-Mackie EJ; Uyesaka N; Schechter AN; Fibach E
    Exp Hematol; 1998 Apr; 26(4):314-9. PubMed ID: 9546314
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sickling times of individual erythrocytes at zero Po2.
    Zarkowsky HS; Hochmuth RM
    J Clin Invest; 1975 Oct; 56(4):1023-34. PubMed ID: 239967
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Single cell laser light scattering spectroscopy in a flow cell: repeated sickling of sickle red blood cells.
    Peetermans JA; Nishio I; Ohnishi ST; Tanaka T
    Biochim Biophys Acta; 1987 Dec; 931(3):320-5. PubMed ID: 3676348
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hemoglobin S Antilles: a variant with lower solubility than hemoglobin S and producing sickle cell disease in heterozygotes.
    Monplaisir N; Merault G; Poyart C; Rhoda MD; Craescu C; Vidaud M; Galacteros F; Blouquit Y; Rosa J
    Proc Natl Acad Sci U S A; 1986 Dec; 83(24):9363-7. PubMed ID: 3467311
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electron microscopic studies of the intracellular polymerization of sickle hemoglobin.
    Acquaye C; Blanchette-Mackie EJ; Reindorf C; Edelstein S; Schechter AN
    Blood Cells; 1988; 13(3):359-76. PubMed ID: 3382746
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dehydration and delayed proton equilibria of red blood cells suspended in isosmotic phosphate buffers. Implications for studies of sickled cells.
    Bookchin RM; Lew DJ; Balazs T; Ueda Y; Lew VL
    J Lab Clin Med; 1984 Dec; 104(6):855-66. PubMed ID: 6094692
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamics of oxygen unloading from sickle erythrocytes.
    Makhijani VB; Cokelet GR; Clark A
    Biophys J; 1990 Oct; 58(4):1025-52. PubMed ID: 2248988
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intracellular polymerization of sickle hemoglobin: disease severity and therapeutic goals.
    Noguchi CT; Rodgers GP; Schechter AN
    Prog Clin Biol Res; 1987; 240():381-91. PubMed ID: 3615501
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.