BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1027 related articles for article (PubMed ID: 12761785)

  • 1. Influence of solvent on temperature and thermal peak broadening in capillary zone electrophoresis.
    Porras SP; Marziali E; Gas B; Kenndler E
    Electrophoresis; 2003 May; 24(10):1553-64. PubMed ID: 12761785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is the general conclusion justified that higher applicable field strength results in shorter analysis time with organic solvents in CE?
    Téllez A; Kenndler E
    Electrophoresis; 2009 Nov; 30(22):3978-85. PubMed ID: 19938180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peak dispersion and contributions to plate height in nonaqueous capillary electrophoresis at high electric field strengths: ethanol as background electrolyte solvent.
    Palonen S; Jussila M; Porras SP; Riekkola ML
    Electrophoresis; 2004 Jan; 25(2):344-54. PubMed ID: 14743487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A critical overview of non-aqueous capillary electrophoresis. Part II: separation efficiency and analysis time.
    Kenndler E
    J Chromatogr A; 2014 Mar; 1335():31-41. PubMed ID: 24485541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Band-broadening in capillary zone electrophoresis with axial temperature gradients.
    Xuan X; Li D
    Electrophoresis; 2005 Jan; 26(1):166-75. PubMed ID: 15624181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of ignored and well-known zone distortions on the separation performance of proteins in capillary free zone electrophoresis with special reference to analysis in polyacrylamide-coated fused silica capillaries in various buffers. I. Theoretical studies.
    Hjertén S; Mohabbati S; Westerlund D
    J Chromatogr A; 2004 Oct; 1053(1-2):181-99. PubMed ID: 15543984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peak dispersion and contributions to plate height in nonaqueous capillary electrophoresis at high electric field strengths: propanol as background electrolyte solvent.
    Palonen S; Porras SP; Jussila M; Riekkola ML
    Electrophoresis; 2003 May; 24(10):1565-76. PubMed ID: 12761786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organic solvents in CE.
    Kenndler E
    Electrophoresis; 2009 Jun; 30 Suppl 1():S101-11. PubMed ID: 19517501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formamide as solvent for capillary zone electrophoresis.
    Porras SP; Kenndler E
    Electrophoresis; 2004 Sep; 25(17):2946-58. PubMed ID: 15349934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Internal electrolyte temperatures for polymer and fused-silica capillaries used in capillary electrophoresis.
    Evenhuis CJ; Guijt RM; Macka M; Marriott PJ; Haddad PR
    Electrophoresis; 2005 Nov; 26(22):4333-44. PubMed ID: 16287176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of dielectric properties of solvents on the quality factor for a beyond 900 MHz cryogenic probe model.
    Horiuchi T; Takahashi M; Kikuchi J; Yokoyama S; Maeda H
    J Magn Reson; 2005 May; 174(1):34-42. PubMed ID: 15809170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Joule heating in packed capillaries used in capillary electrochromatography.
    Rathore AS; Reynolds KJ; Colón LA
    Electrophoresis; 2002 Sep; 23(17):2918-28. PubMed ID: 12207300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zone broadening in electrophoresis with special reference to high-performance electrophoresis in capillaries: an interplay between theory and practice.
    Hjertén S
    Electrophoresis; 1990 Sep; 11(9):665-90. PubMed ID: 2257839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature profiles and heat dissipation in capillary electrophoresis.
    Evenhuis CJ; Guijt RM; Macka M; Marriott PJ; Haddad PR
    Anal Chem; 2006 Apr; 78(8):2684-93. PubMed ID: 16615780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heat treatment of whole milk by the direct joule effect--experimental and numerical approaches to fouling mechanisms.
    Fillaudeau L; Winterton P; Leuliet JC; Tissier JP; Maury V; Semet F; Debreyne P; Berthou M; Chopard F
    J Dairy Sci; 2006 Dec; 89(12):4475-89. PubMed ID: 17106078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonaqueous capillary electrophoresis with alcoholic background electrolytes: separation efficiency under high electrical field strengths.
    Palonen S; Jussila M; Porras SP; Hyötyläinen T; Riekkola ML
    Electrophoresis; 2002 Feb; 23(3):393-9. PubMed ID: 11870738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Are the asserted advantages of organic solvents in capillary electrophoresis real? A critical discussion.
    Porras SP; Kenndler E
    Electrophoresis; 2005 Sep; 26(17):3203-20. PubMed ID: 16143976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analyte and system eigenpeaks in nonaqueous capillary zone electrophoresis: theoretical description and experimental confirmation with methanol as solvent.
    Vceláková K; Zusková I; Porras SP; Gas B; Kenndler E
    Electrophoresis; 2005 Jan; 26(2):463-72. PubMed ID: 15657898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature profile of buffer-filled electrophoresis capillaries using air convection cooling.
    Nishikawa T; Kambara H
    Electrophoresis; 1996 Jun; 17(6):1115-20. PubMed ID: 8832180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 52.