BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 12761786)

  • 1. Peak dispersion and contributions to plate height in nonaqueous capillary electrophoresis at high electric field strengths: propanol as background electrolyte solvent.
    Palonen S; Porras SP; Jussila M; Riekkola ML
    Electrophoresis; 2003 May; 24(10):1565-76. PubMed ID: 12761786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peak dispersion and contributions to plate height in nonaqueous capillary electrophoresis at high electric field strengths: ethanol as background electrolyte solvent.
    Palonen S; Jussila M; Porras SP; Riekkola ML
    Electrophoresis; 2004 Jan; 25(2):344-54. PubMed ID: 14743487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonaqueous capillary electrophoresis with alcoholic background electrolytes: separation efficiency under high electrical field strengths.
    Palonen S; Jussila M; Porras SP; Hyötyläinen T; Riekkola ML
    Electrophoresis; 2002 Feb; 23(3):393-9. PubMed ID: 11870738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of solvent on temperature and thermal peak broadening in capillary zone electrophoresis.
    Porras SP; Marziali E; Gas B; Kenndler E
    Electrophoresis; 2003 May; 24(10):1553-64. PubMed ID: 12761785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-uniform surface charge distributions in CE: theoretical and experimental approach based on Taylor dispersion.
    Danger G; Pascal R; Cottet H
    Electrophoresis; 2008 Nov; 29(20):4226-37. PubMed ID: 18924104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A critical overview of non-aqueous capillary electrophoresis. Part II: separation efficiency and analysis time.
    Kenndler E
    J Chromatogr A; 2014 Mar; 1335():31-41. PubMed ID: 24485541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of initial voltage ramp on separation efficiency in non-aqueous capillary electrophoresis with ethanol as background electrolyte solvent.
    Palonen S; Jussila M; Riekkola ML
    J Chromatogr A; 2005 Mar; 1068(1):107-14. PubMed ID: 15844548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Band-broadening in capillary zone electrophoresis with axial temperature gradients.
    Xuan X; Li D
    Electrophoresis; 2005 Jan; 26(1):166-75. PubMed ID: 15624181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of neutral cyclodextrin concentration on plate numbers in capillary electrophoresis.
    Seals TH; Sheng C; Davis JM
    Electrophoresis; 2001 Jun; 22(10):1957-73. PubMed ID: 11465494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analyte and system eigenpeaks in nonaqueous capillary zone electrophoresis: theoretical description and experimental confirmation with methanol as solvent.
    Vceláková K; Zusková I; Porras SP; Gas B; Kenndler E
    Electrophoresis; 2005 Jan; 26(2):463-72. PubMed ID: 15657898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The principles of migration and dispersion in capillary zone electrophoresis in nonaqueous solvents.
    Porras SP; Riekkola ML; Kenndler E
    Electrophoresis; 2003 May; 24(10):1485-98. PubMed ID: 12761779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrafast DNA analysis by capillary electrophoresis/laser-induced fluorescence detection.
    Müller O; Minarik M; Foret F
    Electrophoresis; 1998 Jun; 19(8-9):1436-44. PubMed ID: 9694293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Are the asserted advantages of organic solvents in capillary electrophoresis real? A critical discussion.
    Porras SP; Kenndler E
    Electrophoresis; 2005 Sep; 26(17):3203-20. PubMed ID: 16143976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extremely high electric field strengths in non-aqueous capillary electrophoresis.
    Palonen S; Jussila M; Porras SP; Hyötyläinen T; Riekkola ML
    J Chromatogr A; 2001 May; 916(1-2):89-99. PubMed ID: 11382314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonaqueous capillary electrophoresis-mass spectrometry.
    Scriba GK
    J Chromatogr A; 2007 Aug; 1159(1-2):28-41. PubMed ID: 17316665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conductivity detection in capillary zone electrophoresis: inspection by PeakMaster.
    Jaros M; Soga T; van de Goor T; Gas B
    Electrophoresis; 2005 May; 26(10):1948-53. PubMed ID: 15818577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel dynamic polymer coating for capillary electrophoresis in nonaqueous methanolic background electrolytes.
    Porras SP; Wiedmer SK; Strandman S; Tenhu H; Riekkola ML
    Electrophoresis; 2001 Oct; 22(17):3805-12. PubMed ID: 11699922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diffusion as major source of band broadening in field-amplified sample stacking under negligible electroosmotic flow velocity conditions.
    Huhn C; Pyell U
    J Chromatogr A; 2010 Jun; 1217(26):4476-86. PubMed ID: 20452606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast enantiomeric separation with vancomycin as chiral additive by co-electroosmotic flow capillary electrophoresis: increase of the detection sensitivity by the partial filling technique.
    Kang J; Wistuba D; Schurig V
    Electrophoresis; 2003 Aug; 24(15):2674-9. PubMed ID: 12900881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of capillary coiling to zone dispersion in capillary zone electrophoresis.
    Kasicka V; Prusík Z; Gas B; Stĕdrý M
    Electrophoresis; 1995 Nov; 16(11):2034-8. PubMed ID: 8748733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.