These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 12761839)

  • 21. The effects of increased intracortical remodeling on microcrack behaviour in compact bone.
    Kennedy OD; Brennan O; Mauer P; Rackard SM; O'Brien FJ; Taylor D; Lee TC
    Bone; 2008 Nov; 43(5):889-93. PubMed ID: 18706535
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fracture toughness and fatigue crack propagation rate of short fiber reinforced epoxy composites for analogue cortical bone.
    Chong AC; Miller F; Buxton M; Friis EA
    J Biomech Eng; 2007 Aug; 129(4):487-93. PubMed ID: 17655469
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of the degradation of the organic matrix on the microscopic fracture behavior of trabecular bone.
    Fantner GE; Birkedal H; Kindt JH; Hassenkam T; Weaver JC; Cutroni JA; Bosma BL; Bawazer L; Finch MM; Cidade GA; Morse DE; Stucky GD; Hansma PK
    Bone; 2004 Nov; 35(5):1013-22. PubMed ID: 15542025
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bone maintenance and remodeling: a control system based on fatigue damage.
    Taylor D
    J Orthop Res; 1997 Jul; 15(4):601-6. PubMed ID: 9379271
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Re-evaluating the toughness of human cortical bone.
    Yang QD; Cox BN; Nalla RK; Ritchie RO
    Bone; 2006 Jun; 38(6):878-87. PubMed ID: 16338188
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Response of the osteocyte syncytium adjacent to and distant from linear microcracks during adaptation to cyclic fatigue loading.
    Colopy SA; Benz-Dean J; Barrett JG; Sample SJ; Lu Y; Danova NA; Kalscheur VL; Vanderby R; Markel MD; Muir P
    Bone; 2004 Oct; 35(4):881-91. PubMed ID: 15454095
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The dependence of transversely isotropic elasticity of human femoral cortical bone on porosity.
    Dong XN; Guo XE
    J Biomech; 2004 Aug; 37(8):1281-7. PubMed ID: 15212934
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Damage in trabecular bone at small strains.
    Morgan EF; Yeh OC; Keaveny TM
    Eur J Morphol; 2005; 42(1-2):13-21. PubMed ID: 16123020
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The behaviour of fatigue-induced microdamage in compact bone samples from control and ovariectomised sheep.
    Kennedy OD; Brennan O; Mauer P; O'Brien FJ; Rackard SM; Taylor D; Lee TC
    Stud Health Technol Inform; 2008; 133():148-55. PubMed ID: 18376023
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Evaluation of bone structure and quality of ovariectomized rats by microcrack].
    Dai RC; Liao EY; Yang C
    Hunan Yi Ke Da Xue Xue Bao; 2003 Dec; 28(6):591-6. PubMed ID: 15804068
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Determining the elastic modulus of mouse cortical bone using electronic speckle pattern interferometry (ESPI) and micro computed tomography: a new approach for characterizing small-bone material properties.
    Chattah NL; Sharir A; Weiner S; Shahar R
    Bone; 2009 Jul; 45(1):84-90. PubMed ID: 19332167
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Age-related differences in post-yield damage in human cortical bone. Experiment and model.
    Courtney AC; Hayes WC; Gibson LJ
    J Biomech; 1996 Nov; 29(11):1463-71. PubMed ID: 8894927
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microcracks colocalize within highly mineralized regions of cortical bone tissue.
    Wasserman N; Yerramshetty J; Akkus O
    Eur J Morphol; 2005; 42(1-2):43-51. PubMed ID: 16123023
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microdamage in cortical bone due to the overtightening of orthodontic microscrews.
    Wawrzinek C; Sommer T; Fischer-Brandies H
    J Orofac Orthop; 2008 Mar; 69(2):121-34. PubMed ID: 18385958
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterizing microcrack orientation distribution functions in osteonal bone samples.
    Wolfram U; Schwiedrzik JJ; Mirzaali MJ; Bürki A; Varga P; Olivier C; Peyrin F; Zysset PK
    J Microsc; 2016 Dec; 264(3):268-281. PubMed ID: 27421084
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The true toughness of human cortical bone measured with realistically short cracks.
    Koester KJ; Ager JW; Ritchie RO
    Nat Mater; 2008 Aug; 7(8):672-7. PubMed ID: 18587403
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Distribution of microcrack lengths in bone in vivo and in vitro.
    Presbitero G; O'Brien FJ; Lee TC; Taylor D
    J Theor Biol; 2012 Jul; 304():164-71. PubMed ID: 22498804
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The morphological association between microcracks and osteocyte lacunae in human cortical bone.
    Qiu S; Rao DS; Fyhrie DP; Palnitkar S; Parfitt AM
    Bone; 2005 Jul; 37(1):10-5. PubMed ID: 15878702
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Finite element modeling of damage accumulation in trabecular bone under cyclic loading.
    Guo XE; McMahon TA; Keaveny TM; Hayes WC; Gibson LJ
    J Biomech; 1994 Feb; 27(2):145-55. PubMed ID: 8132682
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spatiotemporal characterization of microdamage accumulation in rat ulnae in response to uniaxial compressive fatigue loading.
    Zhang X; Liu X; Yan Z; Cai J; Kang F; Shan S; Wang P; Zhai M; Edward Guo X; Luo E; Jing D
    Bone; 2018 Mar; 108():156-164. PubMed ID: 29331298
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.