These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 12762014)
1. Analysis of the active site of the ribosome by site-directed mutagenesis. Kim DF; Semrad K; Green R Cold Spring Harb Symp Quant Biol; 2001; 66():119-26. PubMed ID: 12762014 [No Abstract] [Full Text] [Related]
2. Reconstitution of functional 50S ribosomes from in vitro transcripts of Bacillus stearothermophilus 23S rRNA. Green R; Noller HF Biochemistry; 1999 Feb; 38(6):1772-9. PubMed ID: 10026257 [TBL] [Abstract][Full Text] [Related]
3. Base-pairing between 23S rRNA and tRNA in the ribosomal A site. Kim DF; Green R Mol Cell; 1999 Nov; 4(5):859-64. PubMed ID: 10619032 [TBL] [Abstract][Full Text] [Related]
4. The structure of helix 89 of 23S rRNA is important for peptidyl transferase function of Escherichia coli ribosome. Burakovsky DE; Sergiev PV; Steblyanko MA; Konevega AL; Bogdanov AA; Dontsova OA FEBS Lett; 2011 Oct; 585(19):3073-8. PubMed ID: 21875584 [TBL] [Abstract][Full Text] [Related]
5. The three-dimensional structure of the RNA-binding domain of ribosomal protein L2; a protein at the peptidyl transferase center of the ribosome. Nakagawa A; Nakashima T; Taniguchi M; Hosaka H; Kimura M; Tanaka I EMBO J; 1999 Mar; 18(6):1459-67. PubMed ID: 10075918 [TBL] [Abstract][Full Text] [Related]
6. Crystallization and preliminary X-ray crystallographic study of a 23S rRNA binding domain of the ribosomal protein L2 from Bacillus stearothermophilus. Nakashima T; Kimura M; Nakagawa A; Tanaka I J Struct Biol; 1998 Dec; 124(1):99-101. PubMed ID: 9931278 [TBL] [Abstract][Full Text] [Related]
7. Mutations at position A960 of E. coli 23 S ribosomal RNA influence the structure of 5 S ribosomal RNA and the peptidyltransferase region of 23 S ribosomal RNA. Sergiev PV; Bogdanov AA; Dahlberg AE; Dontsova O J Mol Biol; 2000 Jun; 299(2):379-89. PubMed ID: 10860746 [TBL] [Abstract][Full Text] [Related]
8. Analysis of mutations at residues A2451 and G2447 of 23S rRNA in the peptidyltransferase active site of the 50S ribosomal subunit. Thompson J; Kim DF; O'Connor M; Lieberman KR; Bayfield MA; Gregory ST; Green R; Noller HF; Dahlberg AE Proc Natl Acad Sci U S A; 2001 Jul; 98(16):9002-7. PubMed ID: 11470897 [TBL] [Abstract][Full Text] [Related]
9. A base pair between tRNA and 23S rRNA in the peptidyl transferase centre of the ribosome. Samaha RR; Green R; Noller HF Nature; 1995 Sep; 377(6547):309-14. PubMed ID: 7566085 [TBL] [Abstract][Full Text] [Related]
10. Non-stressful death of 23S rRNA mutant G2061C defective in puromycin reaction. Sergiev PV; Lesnyak DV; Burakovsky DE; Svetlov M; Kolb VA; Serebryakova MV; Demina IA; Govorun VM; Dontsova OA; Bogdanov AA J Mol Biol; 2012 Mar; 416(5):656-67. PubMed ID: 22245576 [TBL] [Abstract][Full Text] [Related]
11. Sequence complementarity at the ribosomal Peptidyl Transferase Centre implies self-replicating origin. Agmon I FEBS Lett; 2017 Oct; 591(20):3252-3258. PubMed ID: 28786485 [TBL] [Abstract][Full Text] [Related]
12. Mutational analysis of the donor substrate binding site of the ribosomal peptidyltransferase center. Saarma U; Spahn CM; Nierhaus KH; Remme J RNA; 1998 Feb; 4(2):189-94. PubMed ID: 9570318 [TBL] [Abstract][Full Text] [Related]
13. Mutations at nucleotides G2251 and U2585 of 23 S rRNA perturb the peptidyl transferase center of the ribosome. Green R; Samaha RR; Noller HF J Mol Biol; 1997 Feb; 266(1):40-50. PubMed ID: 9054969 [TBL] [Abstract][Full Text] [Related]
14. Mutagenesis of the peptidyltransferase center of 23S rRNA: the invariant U2449 is dispensable. O'Connor M; Lee WM; Mankad A; Squires CL; Dahlberg AE Nucleic Acids Res; 2001 Feb; 29(3):710-5. PubMed ID: 11160893 [TBL] [Abstract][Full Text] [Related]
15. Chemical modification studies of a protein at the peptidyltransferase site of the Bacillus stearothermophilus ribosome. The 50 S ribosomal subunit is a highly integrated functional unit. Auron PE; Erdelsky KJ; Fahnestock SR J Biol Chem; 1978 Oct; 253(19):6893-900. PubMed ID: 690131 [No Abstract] [Full Text] [Related]
16. An orthogonal ribosome-tRNA pair via engineering of the peptidyl transferase center. Terasaka N; Hayashi G; Katoh T; Suga H Nat Chem Biol; 2014 Jul; 10(7):555-7. PubMed ID: 24907900 [TBL] [Abstract][Full Text] [Related]
17. Madumycin II inhibits peptide bond formation by forcing the peptidyl transferase center into an inactive state. Osterman IA; Khabibullina NF; Komarova ES; Kasatsky P; Kartsev VG; Bogdanov AA; Dontsova OA; Konevega AL; Sergiev PV; Polikanov YS Nucleic Acids Res; 2017 Jul; 45(12):7507-7514. PubMed ID: 28505372 [TBL] [Abstract][Full Text] [Related]
18. Reconstitution of functionally active Thermus aquaticus large ribosomal subunits with in vitro-transcribed rRNA. Khaitovich P; Tenson T; Kloss P; Mankin AS Biochemistry; 1999 Feb; 38(6):1780-8. PubMed ID: 10026258 [TBL] [Abstract][Full Text] [Related]
19. Mechanism of ribosome assisted protein folding: a new insight into rRNA functions. Samanta D; Das A; Bhattacharya A; Basu A; Das D; DasGupta C Biochem Biophys Res Commun; 2009 Jun; 384(2):137-40. PubMed ID: 19401192 [TBL] [Abstract][Full Text] [Related]
20. Ribosome-catalyzed peptide-bond formation with an A-site substrate covalently linked to 23S ribosomal RNA. Green R; Switzer C; Noller HF Science; 1998 Apr; 280(5361):286-9. PubMed ID: 9535658 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]