These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 12762026)

  • 1. Programmed +1 translational frameshifting in the yeast Saccharomyces cerevisiae results from disruption of translational error correction.
    Stahl G; Ben Salem S; Li Z; McCarty G; Raman A; Shah M; Farabaugh PJ
    Cold Spring Harb Symp Quant Biol; 2001; 66():249-58. PubMed ID: 12762026
    [No Abstract]   [Full Text] [Related]  

  • 2. Programmed +1 frameshifting stimulated by complementarity between a downstream mRNA sequence and an error-correcting region of rRNA.
    Li Z; Stahl G; Farabaugh PJ
    RNA; 2001 Feb; 7(2):275-84. PubMed ID: 11233984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutation of a highly conserved base in the yeast mitochondrial 21S rRNA restricts ribosomal frameshifting.
    Weiss-Brummer B; Zollner A; Haid A; Thompson S
    Mol Gen Genet; 1995 Jul; 248(2):207-16. PubMed ID: 7544431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. rRNA modifications and ribosome function.
    Decatur WA; Fournier MJ
    Trends Biochem Sci; 2002 Jul; 27(7):344-51. PubMed ID: 12114023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An mRNA sequence derived from the yeast EST3 gene stimulates programmed +1 translational frameshifting.
    Taliaferro D; Farabaugh PJ
    RNA; 2007 Apr; 13(4):606-13. PubMed ID: 17329356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Saturation mutagenesis of a +1 programmed frameshift-inducing mRNA sequence derived from a yeast retrotransposon.
    Guarraia C; Norris L; Raman A; Farabaugh PJ
    RNA; 2007 Nov; 13(11):1940-7. PubMed ID: 17881742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The paromomycin resistance mutation (parr-454) in the 15 S rRNA gene of the yeast Saccharomyces cerevisiae is involved in ribosomal frameshifting.
    Weiss-Brummer B; Hüttenhofer A
    Mol Gen Genet; 1989 Jun; 217(2-3):362-9. PubMed ID: 2671660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Domain III of Saccharomyces cerevisiae 25 S ribosomal RNA: its role in binding of ribosomal protein L25 and 60 S subunit formation.
    van Beekvelt CA; Kooi EA; de Graaff-Vincent M; Riet J; Venema J; Raué HA
    J Mol Biol; 2000 Feb; 296(1):7-17. PubMed ID: 10656814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ribosomal frameshifting and transcriptional slippage: From genetic steganography and cryptography to adventitious use.
    Atkins JF; Loughran G; Bhatt PR; Firth AE; Baranov PV
    Nucleic Acids Res; 2016 Sep; 44(15):7007-78. PubMed ID: 27436286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Translational misreading: mutations in translation elongation factor 1alpha differentially affect programmed ribosomal frameshifting and drug sensitivity.
    Dinman JD; Kinzy TG
    RNA; 1997 Aug; 3(8):870-81. PubMed ID: 9257646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of the ITS2-proximal stem and evidence for indirect recognition of processing sites in pre-rRNA processing in yeast.
    Côté CA; Peculis BA
    Nucleic Acids Res; 2001 May; 29(10):2106-16. PubMed ID: 11353080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular biology. Ring around the retroelement.
    Perlman PS; Boeke JD
    Science; 2004 Jan; 303(5655):182-4. PubMed ID: 14716001
    [No Abstract]   [Full Text] [Related]  

  • 13. Eukaryotic translational coupling in UAAUG stop-start codons for the bicistronic RNA translation of the non-long terminal repeat retrotransposon SART1.
    Kojima KK; Matsumoto T; Fujiwara H
    Mol Cell Biol; 2005 Sep; 25(17):7675-86. PubMed ID: 16107714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Translational suppressors and antisuppressors alter the efficiency of the Ty1 programmed translational frameshift.
    Burck CL; Chernoff YO; Liu R; Farabaugh PJ; Liebman SW
    RNA; 1999 Nov; 5(11):1451-7. PubMed ID: 10580473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of nucleotide modifications in the yeast mitochondrial ribosome.
    Sirum-Connolly K; Mason TL
    Nucleic Acids Symp Ser; 1995; (33):73-5. PubMed ID: 8643404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reading two bases twice: mammalian antizyme frameshifting in yeast.
    Matsufuji S; Matsufuji T; Wills NM; Gesteland RF; Atkins JF
    EMBO J; 1996 Mar; 15(6):1360-70. PubMed ID: 8635469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutations in helix 27 of the yeast Saccharomyces cerevisiae 18S rRNA affect the function of the decoding center of the ribosome.
    Velichutina IV; Dresios J; Hong JY; Li C; Mankin A; Synetos D; Liebman SW
    RNA; 2000 Aug; 6(8):1174-84. PubMed ID: 10943896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of frameshift-inducing mutants of elongation factor 1alpha on programmed +1 frameshifting in yeast.
    Farabaugh PJ; Vimaladithan A
    RNA; 1998 Jan; 4(1):38-46. PubMed ID: 9436906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Roles of the negatively charged N-terminal extension of Saccharomyces cerevisiae ribosomal protein S5 revealed by characterization of a yeast strain containing human ribosomal protein S5.
    Galkin O; Bentley AA; Gupta S; Compton BA; Mazumder B; Kinzy TG; Merrick WC; Hatzoglou M; Pestova TV; Hellen CU; Komar AA
    RNA; 2007 Dec; 13(12):2116-28. PubMed ID: 17901157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlation between mechanical strength of messenger RNA pseudoknots and ribosomal frameshifting.
    Hansen TM; Reihani SN; Oddershede LB; Sørensen MA
    Proc Natl Acad Sci U S A; 2007 Apr; 104(14):5830-5. PubMed ID: 17389398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.