BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 1276220)

  • 1. Possible relationship between membrane proteins and phospholipid asymmetry in the human erythrocyte membrane.
    Haest CW; Deuticke B
    Biochim Biophys Acta; 1976 Jun; 436(2):353-65. PubMed ID: 1276220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental alteration of phospholipid-protein interactions within the human erythrocyte membrane. Dependence on glycolytic metabolism.
    Haest CW; Deuticke B
    Biochim Biophys Acta; 1975 Sep; 401(3):468-80. PubMed ID: 1182148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectrin as a stabilizer of the phospholipid asymmetry in the human erythrocyte membrane.
    Haest CW; Plasa G; Kamp D; Deuticke B
    Biochim Biophys Acta; 1978 May; 509(1):21-32. PubMed ID: 647006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relation between various phospholipase actions on human red cell membranes and the interfacial phospholipid pressure in monolayers.
    Demel RA; Geurts van Kessel WS; Zwaal RF; Roelofsen B; van Deenen LL
    Biochim Biophys Acta; 1975 Sep; 406(1):97-107. PubMed ID: 1174576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucose transport into human erythrocytes treated with phospholipase A2 or C.
    Fujii H; Miwa I; Okuda J; Tamura A; Fujii T
    Biochim Biophys Acta; 1986 Aug; 883(1):77-82. PubMed ID: 3730428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phospholipid asymmetry in the membranes of intact human erythrocytes and in spectrin-free microvesicles derived from them.
    Raval PJ; Allan D
    Biochim Biophys Acta; 1984 May; 772(2):192-6. PubMed ID: 6722143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organization of phospholipids in human red cell membranes as detected by the action of various purified phospholipases.
    Zwaal RF; Roelofsen B; Comfurius P; van Deenen LL
    Biochim Biophys Acta; 1975 Sep; 406(1):83-96. PubMed ID: 169915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hyperglycemia induces a loss of phospholipid asymmetry in human erythrocytes.
    Wilson MJ; Richter-Lowney K; Daleke DL
    Biochemistry; 1993 Oct; 32(42):11302-10. PubMed ID: 8218195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring the action and specificity of cobra venom phospholipase A2 toward human erythrocytes, ghost membranes, and lipid mixtures.
    Adamich M; Dennis EA
    J Biol Chem; 1978 Jul; 253(14):5121-5. PubMed ID: 670181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phospholipid asymmetry in the plasma membrane of malaria infected erythrocytes.
    Moll GN; Vial HJ; Bevers EM; Ancelin ML; Roelofsen B; Comfurius P; Slotboom AJ; Zwaal RF; Op den Kamp JA; van Deenen LL
    Biochem Cell Biol; 1990 Feb; 68(2):579-85. PubMed ID: 2344403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of the phospholipid distribution in the human platelet plasma membrane based on the effect of phospholipase A2 from Naja nigricollis.
    Wang CT; Shiao YJ; Chen JC; Tsai WJ; Yang CC
    Biochim Biophys Acta; 1986 Apr; 856(2):244-58. PubMed ID: 3955041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phospholipase A2 as a probe of phospholipid distribution in erythrocyte membranes. Factors influencing the apparent specificity of the reaction.
    Martin JK; Luthra MG; Wells MA; Watts RP; Hanahan DJ
    Biochemistry; 1975 Dec; 14(25):5400-8. PubMed ID: 54
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in lipid metabolism and cell morphology following attack by phospholipase C (Clostridium perfringens) on red cells or lymphocytes.
    Allan D; Low MG; Finean JB; Michell RH
    Biochim Biophys Acta; 1975 Dec; 413(2):309-16. PubMed ID: 172156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Topography and functions of sulfhydryl groups of the human erythrocyte glucose transport mechanism.
    Abbott RE; Schachter D
    Mol Cell Biochem; 1988; 82(1-2):85-90. PubMed ID: 3185521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Asymmetric manipulation of the membrane lipid bilayer of intact human erythrocytes with phospholipase A, C, or D induces a change in cell shape.
    Fujii T; Tamura A
    J Biochem; 1979 Nov; 86(5):1345-52. PubMed ID: 521437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of oxidative stress and erythropoietin on cytoskeletal protein and lipid organization in human erythrocytes.
    Choudhury TD; Das N; Chattopadhyay A; Datta AG
    Pol J Pharmacol; 1999; 51(4):341-50. PubMed ID: 10540966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Topological asymmetry of phospholipid metabolism in rat erythrocyte membranes. Evidence for flip-flop of lecithin.
    Renooij W; Van Golde LM; Zwaal RF; Van Deenen LL
    Eur J Biochem; 1976 Jan; 61(1):53-8. PubMed ID: 1245188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective alteration of erythrocyte deformabiliby by SH-reagents: evidence for an involvement of spectrin in membrane shear elasticity.
    Fischer TM; Haest CW; Stöhr M; Kamp D; Deuticke B
    Biochim Biophys Acta; 1978 Jul; 510(2):270-82. PubMed ID: 667045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multidrug resistance protein 1 regulates lipid asymmetry in erythrocyte membranes.
    Dekkers DW; Comfurius P; van Gool RG; Bevers EM; Zwaal RF
    Biochem J; 2000 Sep; 350 Pt 2(Pt 2):531-5. PubMed ID: 10947968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The lipid requirement of the (Ca2+ + Mg2+)-ATPase in the human erythrocyte membrane, as studied by various highly purified phospholipases.
    Roelofsen B; Schatzmann HJ
    Biochim Biophys Acta; 1977 Jan; 464(1):17-36. PubMed ID: 137746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.