These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 1276220)
1. Possible relationship between membrane proteins and phospholipid asymmetry in the human erythrocyte membrane. Haest CW; Deuticke B Biochim Biophys Acta; 1976 Jun; 436(2):353-65. PubMed ID: 1276220 [TBL] [Abstract][Full Text] [Related]
2. Experimental alteration of phospholipid-protein interactions within the human erythrocyte membrane. Dependence on glycolytic metabolism. Haest CW; Deuticke B Biochim Biophys Acta; 1975 Sep; 401(3):468-80. PubMed ID: 1182148 [TBL] [Abstract][Full Text] [Related]
3. Spectrin as a stabilizer of the phospholipid asymmetry in the human erythrocyte membrane. Haest CW; Plasa G; Kamp D; Deuticke B Biochim Biophys Acta; 1978 May; 509(1):21-32. PubMed ID: 647006 [TBL] [Abstract][Full Text] [Related]
4. Relation between various phospholipase actions on human red cell membranes and the interfacial phospholipid pressure in monolayers. Demel RA; Geurts van Kessel WS; Zwaal RF; Roelofsen B; van Deenen LL Biochim Biophys Acta; 1975 Sep; 406(1):97-107. PubMed ID: 1174576 [TBL] [Abstract][Full Text] [Related]
5. Glucose transport into human erythrocytes treated with phospholipase A2 or C. Fujii H; Miwa I; Okuda J; Tamura A; Fujii T Biochim Biophys Acta; 1986 Aug; 883(1):77-82. PubMed ID: 3730428 [TBL] [Abstract][Full Text] [Related]
6. Phospholipid asymmetry in the membranes of intact human erythrocytes and in spectrin-free microvesicles derived from them. Raval PJ; Allan D Biochim Biophys Acta; 1984 May; 772(2):192-6. PubMed ID: 6722143 [TBL] [Abstract][Full Text] [Related]
7. Organization of phospholipids in human red cell membranes as detected by the action of various purified phospholipases. Zwaal RF; Roelofsen B; Comfurius P; van Deenen LL Biochim Biophys Acta; 1975 Sep; 406(1):83-96. PubMed ID: 169915 [TBL] [Abstract][Full Text] [Related]
8. Hyperglycemia induces a loss of phospholipid asymmetry in human erythrocytes. Wilson MJ; Richter-Lowney K; Daleke DL Biochemistry; 1993 Oct; 32(42):11302-10. PubMed ID: 8218195 [TBL] [Abstract][Full Text] [Related]
9. Exploring the action and specificity of cobra venom phospholipase A2 toward human erythrocytes, ghost membranes, and lipid mixtures. Adamich M; Dennis EA J Biol Chem; 1978 Jul; 253(14):5121-5. PubMed ID: 670181 [TBL] [Abstract][Full Text] [Related]
10. Phospholipid asymmetry in the plasma membrane of malaria infected erythrocytes. Moll GN; Vial HJ; Bevers EM; Ancelin ML; Roelofsen B; Comfurius P; Slotboom AJ; Zwaal RF; Op den Kamp JA; van Deenen LL Biochem Cell Biol; 1990 Feb; 68(2):579-85. PubMed ID: 2344403 [TBL] [Abstract][Full Text] [Related]
11. Estimation of the phospholipid distribution in the human platelet plasma membrane based on the effect of phospholipase A2 from Naja nigricollis. Wang CT; Shiao YJ; Chen JC; Tsai WJ; Yang CC Biochim Biophys Acta; 1986 Apr; 856(2):244-58. PubMed ID: 3955041 [TBL] [Abstract][Full Text] [Related]
12. Phospholipase A2 as a probe of phospholipid distribution in erythrocyte membranes. Factors influencing the apparent specificity of the reaction. Martin JK; Luthra MG; Wells MA; Watts RP; Hanahan DJ Biochemistry; 1975 Dec; 14(25):5400-8. PubMed ID: 54 [TBL] [Abstract][Full Text] [Related]
13. Changes in lipid metabolism and cell morphology following attack by phospholipase C (Clostridium perfringens) on red cells or lymphocytes. Allan D; Low MG; Finean JB; Michell RH Biochim Biophys Acta; 1975 Dec; 413(2):309-16. PubMed ID: 172156 [TBL] [Abstract][Full Text] [Related]
14. Topography and functions of sulfhydryl groups of the human erythrocyte glucose transport mechanism. Abbott RE; Schachter D Mol Cell Biochem; 1988; 82(1-2):85-90. PubMed ID: 3185521 [TBL] [Abstract][Full Text] [Related]
15. Asymmetric manipulation of the membrane lipid bilayer of intact human erythrocytes with phospholipase A, C, or D induces a change in cell shape. Fujii T; Tamura A J Biochem; 1979 Nov; 86(5):1345-52. PubMed ID: 521437 [TBL] [Abstract][Full Text] [Related]
16. Effect of oxidative stress and erythropoietin on cytoskeletal protein and lipid organization in human erythrocytes. Choudhury TD; Das N; Chattopadhyay A; Datta AG Pol J Pharmacol; 1999; 51(4):341-50. PubMed ID: 10540966 [TBL] [Abstract][Full Text] [Related]
17. Topological asymmetry of phospholipid metabolism in rat erythrocyte membranes. Evidence for flip-flop of lecithin. Renooij W; Van Golde LM; Zwaal RF; Van Deenen LL Eur J Biochem; 1976 Jan; 61(1):53-8. PubMed ID: 1245188 [TBL] [Abstract][Full Text] [Related]
18. Selective alteration of erythrocyte deformabiliby by SH-reagents: evidence for an involvement of spectrin in membrane shear elasticity. Fischer TM; Haest CW; Stöhr M; Kamp D; Deuticke B Biochim Biophys Acta; 1978 Jul; 510(2):270-82. PubMed ID: 667045 [TBL] [Abstract][Full Text] [Related]
20. The lipid requirement of the (Ca2+ + Mg2+)-ATPase in the human erythrocyte membrane, as studied by various highly purified phospholipases. Roelofsen B; Schatzmann HJ Biochim Biophys Acta; 1977 Jan; 464(1):17-36. PubMed ID: 137746 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]