These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 12762449)

  • 1. Penalized estimating equations.
    Fu WJ
    Biometrics; 2003 Mar; 59(1):126-32. PubMed ID: 12762449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Penalized generalized estimating equations for high-dimensional longitudinal data analysis.
    Wang L; Zhou J; Qu A
    Biometrics; 2012 Jun; 68(2):353-60. PubMed ID: 21955051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance of generalized estimating equations in practical situations.
    Lipsitz SR; Fitzmaurice GM; Orav EJ; Laird NM
    Biometrics; 1994 Mar; 50(1):270-8. PubMed ID: 8086610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Akaike's information criterion in generalized estimating equations.
    Pan W
    Biometrics; 2001 Mar; 57(1):120-5. PubMed ID: 11252586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bias-reduced and separation-proof GEE with small or sparse longitudinal binary data.
    Mondol MH; Rahman MS
    Stat Med; 2019 Jun; 38(14):2544-2560. PubMed ID: 30793784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of robust estimating equations to the analysis of quantitative longitudinal data.
    Hu M; Lachin JM
    Stat Med; 2001 Nov; 20(22):3411-28. PubMed ID: 11746326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clustering in linear-mixed models with a group fused lasso penalty.
    Heinzl F; Tutz G
    Biom J; 2014 Jan; 56(1):44-68. PubMed ID: 24249100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Joint variable selection for fixed and random effects in linear mixed-effects models.
    Bondell HD; Krishna A; Ghosh SK
    Biometrics; 2010 Dec; 66(4):1069-77. PubMed ID: 20163404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regularized sandwich estimators for analysis of high-dimensional data using generalized estimating equations.
    Warton DI
    Biometrics; 2011 Mar; 67(1):116-23. PubMed ID: 20528857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Model selection for generalized estimating equations accommodating dropout missingness.
    Shen CW; Chen YH
    Biometrics; 2012 Dec; 68(4):1046-54. PubMed ID: 22463099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimating equations for measures of association between repeated binary responses.
    Lipsitz SR; Fitzmaurice GM
    Biometrics; 1996 Sep; 52(3):903-12. PubMed ID: 8805760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expected estimating equations for missing data, measurement error, and misclassification, with application to longitudinal nonignorable missing data.
    Wang CY; Huang Y; Chao EC; Jeffcoat MK
    Biometrics; 2008 Mar; 64(1):85-95. PubMed ID: 17608787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An approximate marginal logistic distribution for the analysis of longitudinal ordinal data.
    Nooraee N; Abegaz F; Ormel J; Wit E; van den Heuvel ER
    Biometrics; 2016 Mar; 72(1):253-61. PubMed ID: 26458164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variable selection for zero-inflated and overdispersed data with application to health care demand in Germany.
    Wang Z; Ma S; Wang CY
    Biom J; 2015 Sep; 57(5):867-84. PubMed ID: 26059498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shrinkage empirical likelihood estimator in longitudinal analysis with time-dependent covariates--application to modeling the health of Filipino children.
    Leung DH; Small DS; Qin J; Zhu M
    Biometrics; 2013 Sep; 69(3):624-32. PubMed ID: 23845158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving power in small-sample longitudinal studies when using generalized estimating equations.
    Westgate PM; Burchett WW
    Stat Med; 2016 Sep; 35(21):3733-44. PubMed ID: 27090375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A permutation approach for selecting the penalty parameter in penalized model selection.
    Sabourin JA; Valdar W; Nobel AB
    Biometrics; 2015 Dec; 71(4):1185-94. PubMed ID: 26243050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Model selection in estimating equations.
    Pan W
    Biometrics; 2001 Jun; 57(2):529-34. PubMed ID: 11414579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LASSO type penalized spline regression for binary data.
    Mullah MAS; Hanley JA; Benedetti A
    BMC Med Res Methodol; 2021 Apr; 21(1):83. PubMed ID: 33894761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Working-correlation-structure identification in generalized estimating equations.
    Hin LY; Wang YG
    Stat Med; 2009 Feb; 28(4):642-58. PubMed ID: 19065625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.