BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 12763053)

  • 1. Radical-radical reactions of superoxide: a potential route to toxicity.
    Winterbourn CC; Kettle AJ
    Biochem Biophys Res Commun; 2003 Jun; 305(3):729-36. PubMed ID: 12763053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Requirements for superoxide-dependent tyrosine hydroperoxide formation in peptides.
    Winterbourn CC; Parsons-Mair HN; Gebicki S; Gebicki JM; Davies MJ
    Biochem J; 2004 Jul; 381(Pt 1):241-8. PubMed ID: 15025556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactions of superoxide with the myoglobin tyrosyl radical.
    Das AB; Nagy P; Abbott HF; Winterbourn CC; Kettle AJ
    Free Radic Biol Med; 2010 Jun; 48(11):1540-7. PubMed ID: 20211247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superoxide-mediated formation of tyrosine hydroperoxides and methionine sulfoxide in peptides through radical addition and intramolecular oxygen transfer.
    Nagy P; Kettle AJ; Winterbourn CC
    J Biol Chem; 2009 May; 284(22):14723-33. PubMed ID: 19297319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid reaction of superoxide with insulin-tyrosyl radicals to generate a hydroperoxide with subsequent glutathione addition.
    Das AB; Nauser T; Koppenol WH; Kettle AJ; Winterbourn CC; Nagy P
    Free Radic Biol Med; 2014 May; 70():86-95. PubMed ID: 24561577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superoxide radicals react with peptide-derived tryptophan radicals with very high rate constants to give hydroperoxides as major products.
    Carroll L; Pattison DI; Davies JB; Anderson RF; Lopez-Alarcon C; Davies MJ
    Free Radic Biol Med; 2018 Apr; 118():126-136. PubMed ID: 29496618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ubiquinone-dependent recycling of vitamin E radicals by superoxide.
    Stoyanovsky DA; Osipov AN; Quinn PJ; Kagan VE
    Arch Biochem Biophys; 1995 Nov; 323(2):343-51. PubMed ID: 7487097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prooxidant actions of bisphenol A (BPA) phenoxyl radicals: implications to BPA-related oxidative stress and toxicity.
    Babu S; Uppu S; Claville MO; Uppu RM
    Toxicol Mech Methods; 2013 May; 23(4):273-80. PubMed ID: 23193990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superoxide reaction with tyrosyl radicals generates para-hydroperoxy and para-hydroxy derivatives of tyrosine.
    Möller MN; Hatch DM; Kim HY; Porter NA
    J Am Chem Soc; 2012 Oct; 134(40):16773-80. PubMed ID: 22989205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antioxidant chemistry of alpha-tocopherol in biological systems. Roles of redox cycles and metabolism.
    Liebler DC
    Subcell Biochem; 1998; 30():301-17. PubMed ID: 9932520
    [No Abstract]   [Full Text] [Related]  

  • 11. Free radical reactions of curcumin in membrane models.
    Priyadarsini KI
    Free Radic Biol Med; 1997; 23(6):838-43. PubMed ID: 9378362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of nitric oxide or oxygen on the stable products formed from the tyrosine phenoxyl radical.
    Folkes LK; Bartesaghi S; Trujillo M; Wardman P; Radi R
    Free Radic Res; 2021 Feb; 55(2):141-153. PubMed ID: 33399021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of reduction of tyrosine phenoxyl radicals by glutathione.
    Folkes LK; Trujillo M; Bartesaghi S; Radi R; Wardman P
    Arch Biochem Biophys; 2011 Feb; 506(2):242-9. PubMed ID: 21147061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tyrosine nitration by superoxide and nitric oxide fluxes in biological systems: modeling the impact of superoxide dismutase and nitric oxide diffusion.
    Quijano C; Romero N; Radi R
    Free Radic Biol Med; 2005 Sep; 39(6):728-41. PubMed ID: 16109303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation and propagation of radical reactions on proteins.
    Hawkins CL; Davies MJ
    Biochim Biophys Acta; 2001 Apr; 1504(2-3):196-219. PubMed ID: 11245785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of superoxide and tyrosine peroxide as a result of tyrosyl radical scavenging by glutathione.
    Pichorner H; Metodiewa D; Winterbourn CC
    Arch Biochem Biophys; 1995 Nov; 323(2):429-37. PubMed ID: 7487108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of oxygen, antioxidants, and superoxide radical on tyrosine phenoxyl radical dimerization.
    Hunter EP; Desrosiers MF; Simic MG
    Free Radic Biol Med; 1989; 6(6):581-5. PubMed ID: 2546863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-turnover intermolecular reaction between a Fe(III)-superoxide-Cu(I) cytochrome c oxidase model and exogeneous Tyr244 mimics.
    Collman JP; Decréau RA; Sunderland CJ
    Chem Commun (Camb); 2006 Oct; (37):3894-6. PubMed ID: 17268662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Free oxygen radiacals and kidney diseases--part I].
    Sakac V; Sakac M
    Med Pregl; 2000; 53(9-10):463-74. PubMed ID: 11320727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of superoxide anion during ferrous ion-induced decomposition of linoleic acid hydroperoxide under aerobic conditions.
    Kambayashi Y; Tero-Kubota S; Yamamoto Y; Kato M; Nakano M; Yagi K; Ogino K
    J Biochem; 2003 Dec; 134(6):903-9. PubMed ID: 14769880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.