BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 12763260)

  • 1. Hypocretinergic facilitation of synaptic activity of neurons in the nucleus pontis oralis of the cat.
    Xi MC; Fung SJ; Yamuy J; Morales FR; Chase MH
    Brain Res; 2003 Jun; 976(2):253-8. PubMed ID: 12763260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induction of active (REM) sleep and motor inhibition by hypocretin in the nucleus pontis oralis of the cat.
    Xi MC; Fung SJ; Yamuy J; Morales FR; Chase MH
    J Neurophysiol; 2002 Jun; 87(6):2880-8. PubMed ID: 12037191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions between hypocretinergic and GABAergic systems in the control of activity of neurons in the cat pontine reticular formation.
    Xi M; Fung SJ; Yamuy J; Chase MH
    Neuroscience; 2015 Jul; 298():190-9. PubMed ID: 25892701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects on sleep and wakefulness of the injection of hypocretin-1 (orexin-A) into the laterodorsal tegmental nucleus of the cat.
    Xi MC; Morales FR; Chase MH
    Brain Res; 2001 May; 901(1-2):259-64. PubMed ID: 11368975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuronal mechanisms of active (rapid eye movement) sleep induced by microinjections of hypocretin into the nucleus pontis oralis of the cat.
    Xi MC; Chase MH
    Neuroscience; 2006 Jun; 140(1):335-42. PubMed ID: 16533574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct and indirect excitation of laterodorsal tegmental neurons by Hypocretin/Orexin peptides: implications for wakefulness and narcolepsy.
    Burlet S; Tyler CJ; Leonard CS
    J Neurosci; 2002 Apr; 22(7):2862-72. PubMed ID: 11923451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Excitatory projections from the amygdala to neurons in the nucleus pontis oralis in the rat: an intracellular study.
    Xi M; Fung SJ; Sampogna S; Chase MH
    Neuroscience; 2011 Dec; 197():181-90. PubMed ID: 21955600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hypocretinergic and non-hypocretinergic projections from the hypothalamus to the REM sleep executive area of the pons.
    Torterolo P; Sampogna S; Chase MH
    Brain Res; 2013 Jan; 1491():68-77. PubMed ID: 23122879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hypocretinergic control of spinal cord motoneurons.
    Yamuy J; Fung SJ; Xi M; Chase MH
    J Neurosci; 2004 Jun; 24(23):5336-45. PubMed ID: 15190106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Induction of rapid eye movement sleep by neurotrophin-3 and its co-localization with choline acetyltransferase in mesopontine neurons.
    Yamuy J; Rojas MJ; Torterolo P; Sampogna S; Chase MH
    Neuroscience; 2002; 115(1):85-95. PubMed ID: 12401324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions between GABAergic and cholinergic processes in the nucleus pontis oralis: neuronal mechanisms controlling active (rapid eye movement) sleep and wakefulness.
    Xi MC; Morales FR; Chase MH
    J Neurosci; 2004 Nov; 24(47):10670-8. PubMed ID: 15564583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The amygdala and the pedunculopontine tegmental nucleus: interactions controlling active (rapid eye movement) sleep.
    Xi M; Fung SJ; Zhang J; Sampogna S; Chase MH
    Exp Neurol; 2012 Nov; 238(1):44-51. PubMed ID: 22971360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sleep-wakefulness effects after microinjections of hypocretin 1 (orexin A) in cholinoceptive areas of the cat oral pontine tegmentum.
    Moreno-Balandrán E; Garzón M; Bódalo C; Reinoso-Suárez F; de Andrés I
    Eur J Neurosci; 2008 Jul; 28(2):331-41. PubMed ID: 18702704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The injection of hypocretin-1 into the nucleus pontis oralis induces either active sleep or wakefulness depending on the behavioral state when it is administered.
    Xi M; Chase MH
    Sleep; 2010 Sep; 33(9):1236-43. PubMed ID: 20857871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Orexin peptides enhance median preoptic nucleus neuronal excitability via postsynaptic membrane depolarization and enhancement of glutamatergic afferents.
    Kolaj M; Coderre E; Renaud LP
    Neuroscience; 2008 Sep; 155(4):1212-20. PubMed ID: 18674591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. State-dependent control of lumbar motoneurons by the hypocretinergic system.
    Yamuy J; Fung SJ; Xi M; Chase MH
    Exp Neurol; 2010 Feb; 221(2):335-45. PubMed ID: 19962375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective enhancement of synaptic inhibition by hypocretin (orexin) in rat vagal motor neurons: implications for autonomic regulation.
    Davis SF; Williams KW; Xu W; Glatzer NR; Smith BN
    J Neurosci; 2003 May; 23(9):3844-54. PubMed ID: 12736355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NMDA receptor-mediated synaptic input to nitric oxide synthase-containing neurons of the guinea pig mesopontine tegmentum in vitro.
    Sanchez R; Leonard CS
    Neurosci Lett; 1994 Sep; 179(1-2):141-4. PubMed ID: 7531311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GABAergic actions on cholinergic laterodorsal tegmental neurons: implications for control of behavioral state.
    Kohlmeier KA; Kristiansen U
    Neuroscience; 2010 Dec; 171(3):812-29. PubMed ID: 20884335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NMDA-receptor-mediated synaptic currents in guinea pig laterodorsal tegmental neurons in vitro.
    Sanchez R; Leonard CS
    J Neurophysiol; 1996 Aug; 76(2):1101-11. PubMed ID: 8871223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.