These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 12763660)

  • 41. The iron complex of Dp44mT is redox-active and induces hydroxyl radical formation: an EPR study.
    Jansson PJ; Hawkins CL; Lovejoy DB; Richardson DR
    J Inorg Biochem; 2010 Nov; 104(11):1224-8. PubMed ID: 20719391
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Pyridoxal isonicotinoyl hydrazone inhibits iron-induced ascorbate oxidation and ascorbyl radical formation.
    Maurício AQ; Lopes GK; Gomes CS; Oliveira RG; Alonso A; Hermes-Lima M
    Biochim Biophys Acta; 2003 Mar; 1620(1-3):15-24. PubMed ID: 12595068
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hydroxyl radical scavenging assay of phenolics and flavonoids with a modified cupric reducing antioxidant capacity (CUPRAC) method using catalase for hydrogen peroxide degradation.
    Ozyürek M; Bektaşoğlu B; Güçlü K; Apak R
    Anal Chim Acta; 2008 Jun; 616(2):196-206. PubMed ID: 18482604
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Xanthine oxidase- and iron-dependent lipid peroxidation.
    Miller DM; Grover TA; Nayini N; Aust SD
    Arch Biochem Biophys; 1993 Feb; 301(1):1-7. PubMed ID: 8382902
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Enhanced degradation of chloramphenicol at alkaline conditions by S(-II) assisted heterogeneous Fenton-like reactions using pyrite.
    Zhao L; Chen Y; Liu Y; Luo C; Wu D
    Chemosphere; 2017 Dec; 188():557-566. PubMed ID: 28915374
    [TBL] [Abstract][Full Text] [Related]  

  • 46. NADPH-cytochrome-P450 reductase promotes hydroxyl radical production by the iron complex of ADR-925, the hydrolysis product of ICRF-187 (dexrazoxane).
    Hasinoff BB
    Free Radic Res; 1995 Apr; 22(4):319-25. PubMed ID: 7633562
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Oxidation of aquatic pollutants by ferrous-oxalate complexes under dark aerobic conditions.
    Lee J; Kim J; Choi W
    J Hazard Mater; 2014 Jun; 274():79-86. PubMed ID: 24769845
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Synthesis of [Sb2W20Fe2II(H2O)6O70](10-) with iron powder under mild conditions and its applications in both catalytic Fenton reaction and electrochemical sensing of ascorbic acid.
    Sun M; Li F; Yu L; Wang Y; Xu L
    Dalton Trans; 2016 Feb; 45(6):2417-21. PubMed ID: 26782111
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The Fe
    Illés E; Patra SG; Marks V; Mizrahi A; Meyerstein D
    J Inorg Biochem; 2020 May; 206():111018. PubMed ID: 32050088
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The effect of melanin on iron associated decomposition of hydrogen peroxide.
    Pilas B; Sarna T; Kalyanaraman B; Swartz HM
    Free Radic Biol Med; 1988; 4(5):285-93. PubMed ID: 2834276
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Free radical mechanism of oxidation of uroporphyrinogen in the presence of ferrous iron.
    Mukerji SK; Pimstone NR
    Arch Biochem Biophys; 1990 Sep; 281(2):177-84. PubMed ID: 2168153
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Iron in non-hydroxyl radical mediated photochemical processes for dye degradation: Catalyst or inhibitor?
    Wu B; Zhang S; Li X; Liu X; Pan B
    Chemosphere; 2015 Jul; 131():55-62. PubMed ID: 25765264
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Modifications of boronic ester pro-chelators triggered by hydrogen peroxide tune reactivity to inhibit metal-promoted oxidative stress.
    Charkoudian LK; Pham DM; Kwon AM; Vangeloff AD; Franz KJ
    Dalton Trans; 2007 Nov; (43):5031-42. PubMed ID: 17992288
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Formation of iron complexes with ascorbic acid in physiological conditions in vitro and in tissue in vivo].
    Kozlov AV; Egorov DIu; Vladimirov IuA; Azizova OA
    Biofizika; 1990; 35(3):513-7. PubMed ID: 2169902
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Photo degradation of methyl orange an azo dye by advanced Fenton process using zero valent metallic iron: influence of various reaction parameters and its degradation mechanism.
    Gomathi Devi L; Girish Kumar S; Mohan Reddy K; Munikrishnappa C
    J Hazard Mater; 2009 May; 164(2-3):459-67. PubMed ID: 18805635
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The origin of the hydroxyl radical oxygen in the Fenton reaction.
    Lloyd RV; Hanna PM; Mason RP
    Free Radic Biol Med; 1997; 22(5):885-8. PubMed ID: 9119257
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Reactions of copper(II)-N-polycarboxylate complexes with hydrogen peroxide in the presence of biological reductants: ESR evidence for the formation of hydroxyl radical.
    Ozawa T; Hanaki A; Onodera K; Kasai M
    Biochem Int; 1992 Mar; 26(3):477-83. PubMed ID: 1320883
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A simple fluorescent probe for the determination of dissolved oxygen based on the catalytic activation of oxygen by iron(II) chelates.
    Luo W; Abbas ME; Zhu L; Zhou W; Li K; Tang H; Liu S; Li W
    Anal Chim Acta; 2009 Apr; 640(1-2):63-7. PubMed ID: 19362621
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Studies of ascorbate-dependent, iron-catalyzed lipid peroxidation.
    Miller DM; Aust SD
    Arch Biochem Biophys; 1989 May; 271(1):113-9. PubMed ID: 2712569
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Distinct effects of oxalate versus malonate on the iron redox chemistry: Implications for the photo-Fenton reaction.
    Xiao D; Guo Y; Lou X; Fang C; Wang Z; Liu J
    Chemosphere; 2014 May; 103():354-8. PubMed ID: 24359921
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.