These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 12763882)

  • 1. Responses at the translational level to heterologous expression of the Na,K-ATPase.
    Steffensen L; Pedersen PA
    Ann N Y Acad Sci; 2003 Apr; 986():539-40. PubMed ID: 12763882
    [No Abstract]   [Full Text] [Related]  

  • 2. Heterologous expression of membrane and soluble proteins derepresses GCN4 mRNA translation in the yeast Saccharomyces cerevisiae.
    Steffensen L; Pedersen PA
    Eukaryot Cell; 2006 Feb; 5(2):248-61. PubMed ID: 16467466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of Na,K-ATPase in Saccharomyces cerevisiae.
    Pedersen A; Jørgensen PL
    Ann N Y Acad Sci; 1992 Nov; 671():452-4. PubMed ID: 1337680
    [No Abstract]   [Full Text] [Related]  

  • 4. Using GCN4 as a reporter of eIF2 alpha phosphorylation and translational regulation in yeast.
    Dever TE
    Methods; 1997 Apr; 11(4):403-17. PubMed ID: 9126554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of translational control of eukaryotic gene expression using yeast.
    Hinnebusch AG; Asano K; Olsen DS; Phan L; Nielsen KH; Valásek L
    Ann N Y Acad Sci; 2004 Dec; 1038():60-74. PubMed ID: 15838098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mammalian eukaryotic initiation factor 2 alpha kinases functionally substitute for GCN2 protein kinase in the GCN4 translational control mechanism of yeast.
    Dever TE; Chen JJ; Barber GN; Cigan AM; Feng L; Donahue TF; London IM; Katze MG; Hinnebusch AG
    Proc Natl Acad Sci U S A; 1993 May; 90(10):4616-20. PubMed ID: 8099443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutations in the structural genes for eukaryotic initiation factors 2 alpha and 2 beta of Saccharomyces cerevisiae disrupt translational control of GCN4 mRNA.
    Williams NP; Hinnebusch AG; Donahue TF
    Proc Natl Acad Sci U S A; 1989 Oct; 86(19):7515-9. PubMed ID: 2678106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a heterologous gene expression system for the Na,K-ATPase subunits in the yeast Saccharomyces cerevisiae.
    Horowitz B; Farley RA
    Prog Clin Biol Res; 1988; 268B():85-90. PubMed ID: 2851834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional complementation by wheat eIF2alpha in the yeast GCN2-mediated pathway.
    Chang LY; Yang WY; Roth D
    Biochem Biophys Res Commun; 2000 Dec; 279(2):468-74. PubMed ID: 11118310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene-specific translational control of the yeast GCN4 gene by phosphorylation of eukaryotic initiation factor 2.
    Hinnebusch AG
    Mol Microbiol; 1993 Oct; 10(2):215-23. PubMed ID: 7934812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Soluble factors operating translation in yeast].
    Miyazaki M
    Tanpakushitsu Kakusan Koso; 1994 Mar; 39(4):550-67. PubMed ID: 8165300
    [No Abstract]   [Full Text] [Related]  

  • 12. A protein complex of translational regulators of GCN4 mRNA is the guanine nucleotide-exchange factor for translation initiation factor 2 in yeast.
    Cigan AM; Bushman JL; Boal TR; Hinnebusch AG
    Proc Natl Acad Sci U S A; 1993 Jun; 90(11):5350-4. PubMed ID: 8506384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interplay between GCN2 and GCN4 expression, translation elongation factor 1 mutations and translational fidelity in yeast.
    Magazinnik T; Anand M; Sattlegger E; Hinnebusch AG; Kinzy TG
    Nucleic Acids Res; 2005; 33(14):4584-92. PubMed ID: 16100380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functions of eIF3 downstream of 48S assembly impact AUG recognition and GCN4 translational control.
    Nielsen KH; Szamecz B; Valásek L; Jivotovskaya A; Shin BS; Hinnebusch AG
    EMBO J; 2004 Mar; 23(5):1166-77. PubMed ID: 14976554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Genetic regulatory mechanisms of amino acid biosynthesis in Saccharomyces cerevisiae: mechanism of translational control of GCN4].
    Harashima S
    Tanpakushitsu Kakusan Koso; 1994 Mar; 39(4):530-41. PubMed ID: 8165298
    [No Abstract]   [Full Text] [Related]  

  • 16. Regulation of the Na+/K+-ATPase Ena1 Expression by Calcineurin/Crz1 under High pH Stress: A Quantitative Study.
    Petrezsélyová S; López-Malo M; Canadell D; Roque A; Serra-Cardona A; Marqués MC; Vilaprinyó E; Alves R; Yenush L; Ariño J
    PLoS One; 2016; 11(6):e0158424. PubMed ID: 27362362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Saccharomyces cerevisiae protein phosphatase Ppz1 and protein kinases Sat4 and Hal5 are involved in the control of subcellular localization of Gln3 by likely regulating its phosphorylation state.
    Hirasaki M; Horiguchi M; Numamoto M; Sugiyama M; Kaneko Y; Nogi Y; Harashima S
    J Biosci Bioeng; 2011 Mar; 111(3):249-54. PubMed ID: 21237705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PKR and GCN2 kinases and guanine nucleotide exchange factor eukaryotic translation initiation factor 2B (eIF2B) recognize overlapping surfaces on eIF2alpha.
    Dey M; Trieselmann B; Locke EG; Lu J; Cao C; Dar AC; Krishnamoorthy T; Dong J; Sicheri F; Dever TE
    Mol Cell Biol; 2005 Apr; 25(8):3063-75. PubMed ID: 15798194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of Gcn4 for adaptation to methylglyoxal in Saccharomyces cerevisiae: methylglyoxal attenuates protein synthesis through phosphorylation of eIF2alpha.
    Nomura W; Maeta K; Kita K; Izawa S; Inoue Y
    Biochem Biophys Res Commun; 2008 Nov; 376(4):738-42. PubMed ID: 18812164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane insertion of alpha and beta subunits of human Na+,K+-ATPase.
    Homareda H; Kawakami K; Nagano K; Matsui H
    Prog Clin Biol Res; 1988; 268B():77-84. PubMed ID: 2851833
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.