These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 12764065)

  • 1. Decisional role of the dorsolateral prefrontal cortex in ocular motor behaviour.
    Pierrot-Deseilligny C; Müri RM; Ploner CJ; Gaymard B; Demeret S; Rivaud-Pechoux S
    Brain; 2003 Jun; 126(Pt 6):1460-73. PubMed ID: 12764065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Eye movement disorders after frontal eye field lesions in humans.
    Rivaud S; Müri RM; Gaymard B; Vermersch AI; Pierrot-Deseilligny C
    Exp Brain Res; 1994; 102(1):110-20. PubMed ID: 7895787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of the human dorsolateral prefrontal cortex in ocular motor behavior.
    Pierrot-Deseilligny Ch; Müri RM; Nyffeler T; Milea D
    Ann N Y Acad Sci; 2005 Apr; 1039():239-51. PubMed ID: 15826978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Saccade and smooth-pursuit impairment after cerebral hemispheric lesions.
    Pierrot-Deseilligny C
    Eur Neurol; 1994; 34(3):121-34. PubMed ID: 8033937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Positron emission tomography study of voluntary saccadic eye movements and spatial working memory.
    Sweeney JA; Mintun MA; Kwee S; Wiseman MB; Brown DL; Rosenberg DR; Carl JR
    J Neurophysiol; 1996 Jan; 75(1):454-68. PubMed ID: 8822570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cerebral ocular motor signs.
    Pierrot-Deseilligny C; Gaymard B; Müri R; Rivaud S
    J Neurol; 1997 Feb; 244(2):65-70. PubMed ID: 9120498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cortical control of reflexive visually-guided saccades.
    Pierrot-Deseilligny C; Rivaud S; Gaymard B; Agid Y
    Brain; 1991 Jun; 114 ( Pt 3)():1473-85. PubMed ID: 2065261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using transcranial magnetic stimulation to probe decision-making and memory.
    Müri RM; Nyffeler T
    Prog Brain Res; 2008; 171():413-8. PubMed ID: 18718334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The frontal eye field is involved in spatial short-term memory but not in reflexive saccade inhibition.
    Gaymard B; Ploner CJ; Rivaud-Péchoux S; Pierrot-Deseilligny C
    Exp Brain Res; 1999 Nov; 129(2):288-301. PubMed ID: 10591903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shared variance of oculomotor phenotypes in a large sample of healthy young men.
    Valakos D; Karantinos T; Evdokimidis I; Stefanis NC; Avramopoulos D; Smyrnis N
    Exp Brain Res; 2018 Aug; 236(8):2399-2410. PubMed ID: 29947959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Saccadic eye movement changes in Parkinson's disease dementia and dementia with Lewy bodies.
    Mosimann UP; Müri RM; Burn DJ; Felblinger J; O'Brien JT; McKeith IG
    Brain; 2005 Jun; 128(Pt 6):1267-76. PubMed ID: 15774501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The prefrontal substrate of reflexive saccade inhibition in humans.
    Ploner CJ; Gaymard BM; Rivaud-Péchoux S; Pierrot-Deseilligny C
    Biol Psychiatry; 2005 May; 57(10):1159-65. PubMed ID: 15866556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peak velocities of visually and nonvisually guided saccades in smooth-pursuit and saccadic tasks.
    Van Gelder P; Lebedev S; Tsui WH
    Exp Brain Res; 1997 Sep; 116(2):201-15. PubMed ID: 9348121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Saccade disturbances after bilateral lentiform nucleus lesions in humans.
    Vermersch AI; Müri RM; Rivaud S; Vidailhet M; Gaymard B; Agid Y; Pierrot-Deseilligny C
    J Neurol Neurosurg Psychiatry; 1996 Feb; 60(2):179-84. PubMed ID: 8708649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eye movement deficits in X-linked dystonia-parkinsonism are related to striatal degeneration.
    Sprenger A; Hanssen H; Hagedorn I; Prasuhn J; Rosales RL; Jamora RDG; Diesta CC; Domingo A; Klein C; Brüggemann N; Helmchen C
    Parkinsonism Relat Disord; 2019 Apr; 61():170-178. PubMed ID: 30352750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cortical control of ocular saccades in humans: a model for motricity.
    Pierrot-Deseilligny C; Müri RM; Ploner CJ; Gaymard B; Rivaud-Péchoux S
    Prog Brain Res; 2003; 142():3-17. PubMed ID: 12693251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Slow saccades in bulbar-onset motor neurone disease.
    Donaghy C; Pinnock R; Abrahams S; Cardwell C; Hardiman O; Patterson V; McGivern RC; Gibson JM
    J Neurol; 2010 Jul; 257(7):1134-40. PubMed ID: 20146069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deficits in the initiation of eye movements in the absence of a visual target in adolescents with high functioning autism.
    Goldberg MC; Lasker AG; Zee DS; Garth E; Tien A; Landa RJ
    Neuropsychologia; 2002; 40(12):2039-49. PubMed ID: 12208001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deficits of cortical oculomotor mechanisms in cerebellar atrophy patients.
    Filippopulos F; Eggert T; Straube A
    Exp Brain Res; 2013 Feb; 224(4):541-50. PubMed ID: 23161158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Saccadic eye movement disturbances in whiplash patients with persistent complaints.
    Mosimann UP; Müri RM; Felblinger J; Radanov BP
    Brain; 2000 Apr; 123 ( Pt 4)():828-35. PubMed ID: 10734013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.