These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
381 related articles for article (PubMed ID: 12764199)
1. Uncoupling of leading- and lagging-strand DNA replication during lesion bypass in vivo. Pagès V; Fuchs RP Science; 2003 May; 300(5623):1300-3. PubMed ID: 12764199 [TBL] [Abstract][Full Text] [Related]
2. Postreplication repair mechanisms in the presence of DNA adducts in Escherichia coli. Bichara M; Meier M; Wagner J; Cordonnier A; Lambert IB Mutat Res; 2011; 727(3):104-22. PubMed ID: 21558018 [TBL] [Abstract][Full Text] [Related]
3. Greater susceptibility to mutations in lagging strand of DNA replication in Escherichia coli than in leading strand. Veaute X; Fuchs RP Science; 1993 Jul; 261(5121):598-600. PubMed ID: 8342022 [TBL] [Abstract][Full Text] [Related]
4. DNA polymerases II and V mediate respectively mutagenic (-2 frameshift) and error-free bypass of a single N-2-acetylaminofluorene adduct. Fuchs RP; Koffel-Schwartz N; Pelet S; Janel-Bintz R; Napolitano R; Becherel OJ; Broschard TH; Burnouf DY; Wagner J Biochem Soc Trans; 2001 May; 29(Pt 2):191-5. PubMed ID: 11356152 [TBL] [Abstract][Full Text] [Related]
5. Sequence context modulation of translesion synthesis at a single N-2-acetylaminofluorene adduct located within a mutation hot spot. Burnouf DY; Miturski R; Fuchs RP Chem Res Toxicol; 1999 Feb; 12(2):144-50. PubMed ID: 10027791 [TBL] [Abstract][Full Text] [Related]
6. SOS mutator activity: unequal mutagenesis on leading and lagging strands. Maliszewska-Tkaczyk M; Jonczyk P; Bialoskorska M; Schaaper RM; Fijalkowska IJ Proc Natl Acad Sci U S A; 2000 Nov; 97(23):12678-83. PubMed ID: 11050167 [TBL] [Abstract][Full Text] [Related]
7. Translesion synthesis in Escherichia coli: lessons from the NarI mutation hot spot. Fuchs RP; Fujii S DNA Repair (Amst); 2007 Jul; 6(7):1032-41. PubMed ID: 17403618 [TBL] [Abstract][Full Text] [Related]
8. The N2-ethylguanine and the O6-ethyl- and O6-methylguanine lesions in DNA: contrasting responses from the "bypass" DNA polymerase eta and the replicative DNA polymerase alpha. Perrino FW; Blans P; Harvey S; Gelhaus SL; McGrath C; Akman SA; Jenkins GS; LaCourse WR; Fishbein JC Chem Res Toxicol; 2003 Dec; 16(12):1616-23. PubMed ID: 14680376 [TBL] [Abstract][Full Text] [Related]
9. Specificity of replicative and SOS-inducible DNA polymerases in frameshift mutagenesis: mutability of Salmonella typhimurium strains overexpressing SOS-inducible DNA polymerases to 30 chemical mutagens. Matsui K; Yamada M; Imai M; Yamamoto K; Nohmi T DNA Repair (Amst); 2006 Apr; 5(4):465-78. PubMed ID: 16455311 [TBL] [Abstract][Full Text] [Related]
10. Preferential post-replication repair of DNA lesions situated on the leading strand of plasmids in Escherichia coli. Bichara M; Fuchs RP; Cordonnier A; Lambert IB Mol Microbiol; 2009 Jan; 71(2):305-14. PubMed ID: 19017273 [TBL] [Abstract][Full Text] [Related]
11. Characterization of Escherichia coli translesion synthesis polymerases and their accessory factors. Beuning PJ; Simon SM; Godoy VG; Jarosz DF; Walker GC Methods Enzymol; 2006; 408():318-40. PubMed ID: 16793378 [TBL] [Abstract][Full Text] [Related]
12. SOS mutagenesis results from up-regulation of translesion synthesis. Becherel OJ; Fuchs RP J Mol Biol; 1999 Nov; 294(2):299-306. PubMed ID: 10610759 [TBL] [Abstract][Full Text] [Related]
13. Replication of M13 single-stranded viral DNA bearing single site-specific adducts by escherichia coli cell extracts: differential efficiency of translesion DNA synthesis for SOS-dependent and SOS-independent lesions. Wang G; Rahman MS; Humayun MZ Biochemistry; 1997 Aug; 36(31):9486-92. PubMed ID: 9235993 [TBL] [Abstract][Full Text] [Related]
14. Arrest of replication by mammalian DNA polymerases alpha and beta caused by chromium-DNA lesions. Bridgewater LC; Manning FC; Patierno SR Mol Carcinog; 1998 Dec; 23(4):201-6. PubMed ID: 9869448 [TBL] [Abstract][Full Text] [Related]
15. DNA primase acts as a molecular brake in DNA replication. Lee JB; Hite RK; Hamdan SM; Xie XS; Richardson CC; van Oijen AM Nature; 2006 Feb; 439(7076):621-4. PubMed ID: 16452983 [TBL] [Abstract][Full Text] [Related]
16. DNA polymerase II as a fidelity factor in chromosomal DNA synthesis in Escherichia coli. Banach-Orlowska M; Fijalkowska IJ; Schaaper RM; Jonczyk P Mol Microbiol; 2005 Oct; 58(1):61-70. PubMed ID: 16164549 [TBL] [Abstract][Full Text] [Related]
17. Pol III proofreading activity prevents lesion bypass as evidenced by its molecular signature within E.coli cells. Pages V; Janel-Bintz R; Fuchs RP J Mol Biol; 2005 Sep; 352(3):501-9. PubMed ID: 16111701 [TBL] [Abstract][Full Text] [Related]
18. Roles of replicative and specialized DNA polymerases in frameshift mutagenesis: mutability of Salmonella typhimurium strains lacking one or all of SOS-inducible DNA polymerases to 26 chemicals. Kokubo K; Yamada M; Kanke Y; Nohmi T DNA Repair (Amst); 2005 Sep; 4(10):1160-71. PubMed ID: 16103022 [TBL] [Abstract][Full Text] [Related]
19. [Coordination of leading and lagging DNA in strand replication]. Fijałkowska IJ; Jonczyk P Postepy Biochem; 1997; 43(2):98-104. PubMed ID: 9411439 [No Abstract] [Full Text] [Related]
20. Lagging strand replication of rolling-circle plasmids in Streptomyces lividans: an RNA polymerase-independent primer synthesis. Suzuki I; Kataoka M; Yoshida T; Seki T Arch Microbiol; 2004 Apr; 181(4):305-13. PubMed ID: 15007543 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]