These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 12765029)

  • 1. Specific targeted integration of kanamycin resistance-associated nonselectable DNA in the genome of the yeast Saccharomyces cerevisiae.
    Waghmare SK; Caputo V; Radovic S; Bruschi CV
    Biotechniques; 2003 May; 34(5):1024-8, 1033. PubMed ID: 12765029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A 2-microm DNA-based marker recycling system for multiple gene disruption in the yeast Saccharomyces cerevisiae.
    Storici F; Coglievina M; Bruschi CV
    Yeast; 1999 Mar; 15(4):271-83. PubMed ID: 10206187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular engineering with the FRT sequence of the yeast 2 microm plasmid: [cir0] segregant enrichment by counterselection for 2 microm site-specific recombination.
    Storici F; Bruschi CV
    Gene; 1997 Aug; 195(2):245-55. PubMed ID: 9305770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cre/loxP-mediated in vivo excision of large segments from yeast genome and their amplification based on the 2microm plasmid-derived system.
    Yoon YG; Pósfai G; Szybalski W; Kim SC
    Gene; 1998 Nov; 223(1-2):67-76. PubMed ID: 9858689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene knockouts, in vivo site-directed mutagenesis and other modifications using the delitto perfetto system in Saccharomyces cerevisiae.
    Stuckey S; Storici F
    Methods Enzymol; 2013; 533():103-31. PubMed ID: 24182920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo cloning by homologous recombination in yeast using a two-plasmid-based system.
    Degryse E; Dumas B; Dietrich M; Laruelle L; Achstetter T
    Yeast; 1995 Jun; 11(7):629-40. PubMed ID: 7483836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selectable cassettes for simplified construction of yeast gene disruption vectors.
    Earley MC; Crouse GF
    Gene; 1996 Feb; 169(1):111-3. PubMed ID: 8635733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vectors encoding alternative antibiotic resistance for use in the yeast two-hybrid system.
    Watson MA; Buckholz R; Weiner MP
    Biotechniques; 1996 Aug; 21(2):255-9. PubMed ID: 8862810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Yeast vectors for integration at the HO locus.
    Voth WP; Richards JD; Shaw JM; Stillman DJ
    Nucleic Acids Res; 2001 Jun; 29(12):E59-9. PubMed ID: 11410682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrating after CEN Excision (ICE) Plasmids: Combining the ease of yeast recombination cloning with the stability of genomic integration.
    Flagg MP; Kao A; Hampton RY
    Yeast; 2019 Oct; 36(10):593-605. PubMed ID: 31074531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shuttle vectors for facile gap repair cloning and integration into a neutral locus in Candida albicans.
    Gerami-Nejad M; Zacchi LF; McClellan M; Matter K; Berman J
    Microbiology (Reading); 2013 Mar; 159(Pt 3):565-579. PubMed ID: 23306673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PCR-based gene disruption and recombinatory marker excision to produce modified industrial Saccharomyces cerevisiae without added sequences.
    Walker M; Vystavelova A; Pedler S; Eglinton J; Jiranek V
    J Microbiol Methods; 2005 Nov; 63(2):193-204. PubMed ID: 15949856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The 2 micron plasmid of Saccharomyces cerevisiae: a miniaturized selfish genome with optimized functional competence.
    Chan KM; Liu YT; Ma CH; Jayaram M; Sau S
    Plasmid; 2013 Jul; 70(1):2-17. PubMed ID: 23541845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA cassette exchange in ES cells mediated by Flp recombinase: an efficient strategy for repeated modification of tagged loci by marker-free constructs.
    Seibler J; Schübeler D; Fiering S; Groudine M; Bode J
    Biochemistry; 1998 May; 37(18):6229-34. PubMed ID: 9572836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FLP-FRT mediated intrachromosomal recombination on a tandemly duplicated YEp integrant at the ILV2 locus of chromosome XIII in Saccharomyces cerevisiae.
    Rank GH; Arndt GM; Xiao W
    Curr Genet; 1989 Feb; 15(2):107-12. PubMed ID: 2663188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of the FLP/FRT recombination system in cyanobacteria for construction of markerless mutants.
    Tan X; Liang F; Cai K; Lu X
    Appl Microbiol Biotechnol; 2013 Jul; 97(14):6373-82. PubMed ID: 23512480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Applications of the Saccharomyces cerevisiae Flp-FRT system in bacterial genetics.
    Schweizer HP
    J Mol Microbiol Biotechnol; 2003; 5(2):67-77. PubMed ID: 12736528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-reciprocal chromosomal bridge-induced translocation (BIT) by targeted DNA integration in yeast.
    Tosato V; Waghmare SK; Bruschi CV
    Chromosoma; 2005 May; 114(1):15-27. PubMed ID: 15843952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid and efficient cloning of proviral flanking fragments by kanamycin resistance gene complementation.
    Fehse B; Kühlcke K; Langer A; Ostertag W; Lother H
    Nucleic Acids Res; 1999 Jan; 27(2):706-7. PubMed ID: 9863001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tandem repeat coupled with endonuclease cleavage (TREC): a seamless modification tool for genome engineering in yeast.
    Noskov VN; Segall-Shapiro TH; Chuang RY
    Nucleic Acids Res; 2010 May; 38(8):2570-6. PubMed ID: 20228123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.