These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
88 related articles for article (PubMed ID: 1276509)
61. Connection between stochastic and deterministic modelling of microbial growth. Kutalik Z; Razaz M; Baranyi J J Theor Biol; 2005 Jan; 232(2):285-99. PubMed ID: 15530497 [TBL] [Abstract][Full Text] [Related]
62. A new mathematical approach predicts individual cell growth behavior using bacterial population information. Anderson KR; Mendelson NH; Watkins JC J Theor Biol; 2000 Jan; 202(1):87-94. PubMed ID: 10623502 [TBL] [Abstract][Full Text] [Related]
63. [In vivo kinetics of individual development of Gallionella ferruginea in batch microculture (author's transl)]. Hanert H Arch Mikrobiol; 1974 Mar; 96(1):59-74. PubMed ID: 4600253 [No Abstract] [Full Text] [Related]
64. Growth models of cultures with two liquid phases. IV. Cell adsorption, drop size distribution, and batch growth. Erickson LE; Fan LT; Shah PS; Chen MS Biotechnol Bioeng; 1970 Sep; 12(5):713-46. PubMed ID: 5489782 [No Abstract] [Full Text] [Related]
65. On the connection between bacterial growth and division. Thingstad TF Bull Math Biol; 1976; 38(4):412-23. PubMed ID: 1276509 [No Abstract] [Full Text] [Related]
66. Developmental biology of biofilms: implications for treatment and control. Palmer RJ; White DC Trends Microbiol; 1997 Nov; 5(11):435-40. PubMed ID: 9402699 [TBL] [Abstract][Full Text] [Related]
67. Bacteria make tracks to the pole. Fiebig A; Theriot JA Proc Natl Acad Sci U S A; 2004 Jun; 101(23):8510-1. PubMed ID: 15173579 [No Abstract] [Full Text] [Related]
68. [Uncultured status of pathogenic bacteria: known and possible factors of reversible process induction]. Romanova IuM; Chegaeva EV; Gintsburg AL Mol Gen Mikrobiol Virusol; 1998; (3):3-8. PubMed ID: 9819819 [TBL] [Abstract][Full Text] [Related]
70. What is the bacterial growth law during the division cycle? Cooper S J Bacteriol; 1988 Nov; 170(11):5001-5. PubMed ID: 3053639 [No Abstract] [Full Text] [Related]
71. Bacterial cell division: the mechanism and its precison. Harry E; Monahan L; Thompson L Int Rev Cytol; 2006; 253():27-94. PubMed ID: 17098054 [TBL] [Abstract][Full Text] [Related]
72. Cell division theory and individual-based modeling of microbial lag: part I. The theory of cell division. Dens EJ; Bernaerts K; Standaert AR; Van Impe JF Int J Food Microbiol; 2005 Jun; 101(3):303-18. PubMed ID: 15925713 [TBL] [Abstract][Full Text] [Related]
73. Diverse paths to midcell: assembly of the bacterial cell division machinery. Goehring NW; Beckwith J Curr Biol; 2005 Jul; 15(13):R514-26. PubMed ID: 16005287 [TBL] [Abstract][Full Text] [Related]
74. Recent advances on the development of bacterial poles. Janakiraman A; Goldberg MB Trends Microbiol; 2004 Nov; 12(11):518-25. PubMed ID: 15488393 [TBL] [Abstract][Full Text] [Related]
75. Microbial differentiation: the role of cellular asymmetry. Kelly DJ; Dow CS Microbiol Sci; 1984 Dec; 1(9):214-9. PubMed ID: 6444132 [TBL] [Abstract][Full Text] [Related]
76. Bacterial cell division. de Boer PA; Cook WR; Rothfield LI Annu Rev Genet; 1990; 24():249-74. PubMed ID: 2088169 [No Abstract] [Full Text] [Related]
77. [The current concepts of methylglyoxal metabolism in microorganisms]. Alekseev VS; Alekseeva NV Mikrobiol Zh (1978); 1989; 51(4):100-9. PubMed ID: 2691866 [No Abstract] [Full Text] [Related]