BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 12765361)

  • 1. Measuring the porosity and the tortuosity of porous materials via reflected waves at oblique incidence.
    Fellah ZE; Berger S; Lauriks W; Depollier C; Aristégui C; Chapelon JY
    J Acoust Soc Am; 2003 May; 113(5):2424-33. PubMed ID: 12765361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of transport parameters in air-saturated porous materials via reflected ultrasonic waves.
    Fellah ZE; Depollier C; Berger S; Lauriks W; Trompette P; Chapelon JY
    J Acoust Soc Am; 2003 Nov; 114(5):2561-9. PubMed ID: 14649992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring permeability of porous materials at low frequency range via acoustic transmitted waves.
    Fellah ZE; Fellah M; Mitri FG; Sebaa N; Depollier C; Lauriks W
    Rev Sci Instrum; 2007 Nov; 78(11):114902. PubMed ID: 18052497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measuring static thermal permeability and inertial factor of rigid porous materials (L).
    Sadouki M; Fellah M; Fellah ZE; Ogam E; Sebaa N; Mitri FG; Depollier C
    J Acoust Soc Am; 2011 Nov; 130(5):2627-30. PubMed ID: 22087887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct and inverse scattering of transient acoustic waves by a slab of rigid porous material.
    Fellah ZE; Fellah M; Lauriks W; Depollier C
    J Acoust Soc Am; 2003 Jan; 113(1):61-72. PubMed ID: 12558247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measuring flow resistivity of porous materials at low frequencies range via acoustic transmitted waves.
    Fellah ZE; Fellah M; Sebaa N; Lauriks W; Depollier C
    J Acoust Soc Am; 2006 Apr; 119(4):1926-8. PubMed ID: 16642801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analytical method for the ultrasonic characterization of homogeneous rigid porous materials from transmitted and reflected coefficients.
    Groby JP; Ogam E; De Ryck L; Sebaa N; Lauriks W
    J Acoust Soc Am; 2010 Feb; 127(2):764-72. PubMed ID: 20136199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acoustical modeling and Bayesian inference for rigid porous media in the low-mid frequency regime.
    Roncen R; Fellah ZEA; Lafarge D; Piot E; Simon F; Ogam E; Fellah M; Depollier C
    J Acoust Soc Am; 2018 Dec; 144(6):3084. PubMed ID: 30599665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inverse identification of a higher order viscous parameter of rigid porous media in the high frequency domain.
    Roncen R; Fellah ZEA; Piot E; Simon F; Ogam E; Fellah M; Depollier C
    J Acoust Soc Am; 2019 Mar; 145(3):1629. PubMed ID: 31067960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generalized hyperbolic fractional equation for transient-wave propagation in layered rigid-frame porous materials.
    Fellah M; Fellah ZE; Depollier C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 2):016601. PubMed ID: 18351945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The direct and inverse problems of an air-saturated porous cylinder submitted to acoustic radiation.
    Ogam E; Depollier C; Fellah ZE
    Rev Sci Instrum; 2010 Sep; 81(9):094902. PubMed ID: 20887001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generalized equation for transient-wave propagation in continuous inhomogeneous rigid-frame porous materials at low frequencies.
    Fellah M; Fellah ZE; Ogam E; Mitri FG; Depollier C
    J Acoust Soc Am; 2013 Dec; 134(6):4642. PubMed ID: 25669276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of Higher Order Viscous and Thermal Effects on an Ultrasonic Wave Reflected from the First Interface of a Porous Material.
    Fellah ZEA; Roncen R; Ongwen NO; Ogam E; Fellah M; Depollier C
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measuring static viscous permeability of porous absorbing materials.
    Sadouki M; Fellah ZE; Berbiche A; Fellah M; Mitri FG; Ogam E; Depollier C
    J Acoust Soc Am; 2014 Jun; 135(6):3163-71. PubMed ID: 24907782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bayesian inference for the ultrasonic characterization of rigid porous materials using reflected waves by the first interface.
    Roncen R; Fellah ZEA; Simon F; Piot E; Fellah M; Ogam E; Depollier C
    J Acoust Soc Am; 2018 Jul; 144(1):210. PubMed ID: 30075644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasonic wave's interaction at fluid-porous piezoelectric layered interface.
    Vashishth AK; Gupta V
    Ultrasonics; 2013 Feb; 53(2):479-94. PubMed ID: 23021387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reflection and transmission of plane waves from a fluid-porous piezoelectric solid interface.
    Vashishth AK; Gupta V
    J Acoust Soc Am; 2011 Jun; 129(6):3690-701. PubMed ID: 21682394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transient ultrasound propagation in porous media using Biot theory and fractional calculus: application to human cancellous bone.
    Fellah M; Fellah ZE; Mitri FG; Ogam E; Depollier C
    J Acoust Soc Am; 2013 Apr; 133(4):1867-81. PubMed ID: 23556556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reflection and transmission at normal incidence onto air-saturated porous materials and direct measurements based on parametric demodulated ultrasonic waves.
    Castagnède B; Saeid M; Moussatov A; Gusev V; Tournat V
    Ultrasonics; 2006 Feb; 44(2):221-9. PubMed ID: 16430937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Propagation of acoustic waves in a one-dimensional macroscopically inhomogeneous poroelastic material.
    Gautier G; Kelders L; Groby JP; Dazel O; De Ryck L; Leclaire P
    J Acoust Soc Am; 2011 Sep; 130(3):1390-8. PubMed ID: 21895080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.