These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 12765403)

  • 21. The influence of the vocal tract on the attack transients in clarinet playing.
    Pàmies-Vilà M; Hofmann A; Chatziioannou V
    J New Music Res; 2020; 49(2):126-135. PubMed ID: 32256677
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Computational determination of transition times using the measured mouthpiece pressure from soprano and bass clarinet players.
    Coyle WL; Wong EY; Gabriel JD; Kaplan CN
    JASA Express Lett; 2021 May; 1(5):053201. PubMed ID: 36154113
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The mechanism producing initial transients on the clarinet.
    Almeida A; Li W; Smith JR; Wolfe J
    J Acoust Soc Am; 2017 Dec; 142(6):3376. PubMed ID: 29289088
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Attenuation and scattering of axisymmetrical modes in a fluid-filled round pipe with internally rough walls.
    Maximov GA; Podjachev EV; Horoshenkov KV
    J Acoust Soc Am; 2008 Mar; 123(3):1248-59. PubMed ID: 18345814
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Coupled modes of the resonance box of the guitar.
    Elejabarrieta MJ; Ezcurra A; Santamaria C
    J Acoust Soc Am; 2002 May; 111(5 Pt 1):2283-92. PubMed ID: 12051448
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Wind-instrument reflection function measurements in the time domain.
    Keefe DH
    J Acoust Soc Am; 1996 Apr; 99(4 Pt 1):2370-81. PubMed ID: 8730084
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of Tonguing and Blowing Actions During Clarinet Performance.
    Pàmies-Vilà M; Hofmann A; Chatziioannou V
    Front Psychol; 2018; 9():617. PubMed ID: 29760672
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Some roles of the vocal tract in clarinet breath attacks: natural sounds analysis and model-based synthesis.
    Guillemain P
    J Acoust Soc Am; 2007 Apr; 121(4):2396-406. PubMed ID: 17471751
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Contribution to harmonic balance calculations of self-sustained periodic oscillations with focus on single-reed instruments.
    Farner S; Vergez C; Kergomard J; Lizée A
    J Acoust Soc Am; 2006 Mar; 119(3):1794-804. PubMed ID: 16583920
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Edge resonance in semi-infinite thick pipe: numerical predictions and measurements.
    Ratassepp M; Klauson A; Chati F; Léon F; Maze G
    J Acoust Soc Am; 2008 Aug; 124(2):875-85. PubMed ID: 18681580
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Trumpet with near-perfect harmonicity: design and acoustic results.
    Macaluso CA; Dalmont JP
    J Acoust Soc Am; 2011 Jan; 129(1):404-14. PubMed ID: 21303020
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Integrating piezoresistive sensors on the embouchure analysis of the lower lip in single reed instrumentalists: implementation of the lip pressure appliance (LPA).
    Pais Clemente M; Mendes J; Cerqueira J; Moreira A; Vasconcelos M; Pinhão Ferreira A; Amarante JM
    Clin Exp Dent Res; 2019 Oct; 5(5):491-496. PubMed ID: 31687182
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Experimental study of AO and T1 modes of the concert harp.
    Le Carrou JL; Gautier F; Foltête E
    J Acoust Soc Am; 2007 Jan; 121(1):559-67. PubMed ID: 17297809
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Numerical simulations of fluid-structure interactions in single-reed mouthpieces.
    da Silva AR; Scavone GP; van Walstijn M
    J Acoust Soc Am; 2007 Sep; 122(3):1798. PubMed ID: 17927439
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Underwater tunable organ-pipe sound source.
    Morozov AK; Webb DC
    J Acoust Soc Am; 2007 Aug; 122(2):777-85. PubMed ID: 17672628
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of wall vibrations on the sound of brass wind instruments.
    Kausel W; Zietlow DW; Moore TR
    J Acoust Soc Am; 2010 Nov; 128(5):3161-74. PubMed ID: 21110611
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inverse Doppler Effects in Pipe Instruments.
    Zhai SL; Zhao J; Shen FL; Li LL; Zhao XP
    Sci Rep; 2018 Dec; 8(1):17833. PubMed ID: 30546122
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A new classification of wind instruments: Orofacial considerations.
    Clemente M; Mendes J; Moreira A; Bernardes G; Van Twillert H; Ferreira A; Amarante JM
    J Oral Biol Craniofac Res; 2019; 9(3):268-276. PubMed ID: 31249774
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Low frequency finite element models of the acoustical behavior of earmuffs.
    Boyer S; Doutres O; Sgard F; Laville F; Boutin J
    J Acoust Soc Am; 2015 May; 137(5):2602-13. PubMed ID: 25994693
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sound design of chimney pipes by optimization of their resonators.
    Rucz P; Trommer T; Angster J; Miklós A; Augusztinovicz F
    J Acoust Soc Am; 2013 Jan; 133(1):529-37. PubMed ID: 23297924
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.