These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 12765405)

  • 1. Multiple scattering in a trabecular bone: influence of the marrow viscosity on the effective properties.
    Luppé F; Conoir JM; Franklin H
    J Acoust Soc Am; 2003 May; 113(5):2889-92. PubMed ID: 12765405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of phase velocity in trabecular bone mimicking-phantoms by time domain numerical (EFIT) and analytical multiple scattering approaches.
    Molero M; Medina L
    Ultrasonics; 2012 Sep; 52(7):809-14. PubMed ID: 22698989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Independent scattering model and velocity dispersion in trabecular bone: comparison with a multiple scattering model.
    Haïat G; Naili S
    Biomech Model Mechanobiol; 2011 Feb; 10(1):95-108. PubMed ID: 20490887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inferring pore radius and density from ultrasonic attenuation using physics-based modeling.
    White RD; Yousefian O; Banks HT; Alexanderian A; Muller M
    J Acoust Soc Am; 2021 Jan; 149(1):340. PubMed ID: 33514152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scattering by a fluid cylinder in a porous medium: application to trabecular bone.
    Luppé F; Conoir JM; Franklin H
    J Acoust Soc Am; 2002 Jun; 111(6):2573-82. PubMed ID: 12083188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Velocity dispersion in trabecular bone: influence of multiple scattering and of absorption.
    Haïat G; Lhémery A; Renaud F; Padilla F; Laugier P; Naili S
    J Acoust Soc Am; 2008 Dec; 124(6):4047-58. PubMed ID: 19206827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase velocity analysis of acoustic propagation in trabecular bone.
    Villarreal A; Medina L
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1332-5. PubMed ID: 21095931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical simulation of wave propagation in cancellous bone.
    Padilla F; Bossy E; Haiat G; Jenson F; Laugier P
    Ultrasonics; 2006 Dec; 44 Suppl 1():e239-43. PubMed ID: 16859723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scattering of ultrasound in cancellous bone: predictions from a theoretical model.
    Nicholson PH; Strelitzki R; Cleveland RO; Bouxsein ML
    J Biomech; 2000 Apr; 33(4):503-6. PubMed ID: 10768401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Is trabecular bone permeability governed by molecular ordering-induced fluid viscosity gain? Arguments from re-evaluation of experimental data in the framework of homogenization theory.
    Abdalrahman T; Scheiner S; Hellmich C
    J Theor Biol; 2015 Jan; 365():433-44. PubMed ID: 25452137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurements of ultrasound velocity and attenuation in numerical anisotropic porous media compared to Biot's and multiple scattering models.
    Mézière F; Muller M; Bossy E; Derode A
    Ultrasonics; 2014 Jul; 54(5):1146-54. PubMed ID: 24125533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of the filling fluid on frequency-dependent velocity and attenuation in cancellous bones between 0.35 and 2.5 MHz.
    Pakula M; Padilla F; Laugier P
    J Acoust Soc Am; 2009 Dec; 126(6):3301-10. PubMed ID: 20000944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of bone marrow on acoustic properties of trabecular bone--3D finite difference modeling study.
    Aula AS; Töyräs J; Hakulinen MA; Jurvelin JS
    Ultrasound Med Biol; 2009 Feb; 35(2):308-18. PubMed ID: 19010590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pore cross-section area on predicting elastic properties of trabecular bovine bone for human implants.
    Maciel A; Presbítero G; Piña C; del Pilar Gutiérrez M; Guzmán J; Munguía N
    Biomed Mater Eng; 2015; 25(1):9-23. PubMed ID: 25585977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational modelling of the mechanics of trabecular bone and marrow using fluid structure interaction techniques.
    Birmingham E; Grogan JA; Niebur GL; McNamara LM; McHugh PE
    Ann Biomed Eng; 2013 Apr; 41(4):814-26. PubMed ID: 23519534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A critical damping approach for assessing the role of marrow fat on the mechanical strength of trabecular bone.
    Braidotti P; Stagni L
    Med Hypotheses; 2007; 69(1):43-6. PubMed ID: 17287095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of viscoelastic and viscous absorption on ultrasonic wave propagation in cortical bone: Application to axial transmission.
    Naili S; Vu MB; Grimal Q; Talmant M; Desceliers C; Soize C; Haïat G
    J Acoust Soc Am; 2010 Apr; 127(4):2622-34. PubMed ID: 20370043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multiscale poromicromechanical approach to wave propagation and attenuation in bone.
    Morin C; Hellmich C
    Ultrasonics; 2014 Jul; 54(5):1251-69. PubMed ID: 24457030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interference between wave modes may contribute to the apparent negative dispersion observed in cancellous bone.
    Anderson CC; Marutyan KR; Holland MR; Wear KA; Miller JG
    J Acoust Soc Am; 2008 Sep; 124(3):1781-9. PubMed ID: 19045668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling and analysis of multiple scattering of acoustic waves in complex media: application to the trabecular bone.
    Wojcik J; Litniewski J; Nowicki A
    J Acoust Soc Am; 2011 Oct; 130(4):1908-18. PubMed ID: 21973345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.