These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 12765683)

  • 1. Retrograde activation of store-operated calcium channel.
    Ma J; Pan Z
    Cell Calcium; 2003; 33(5-6):375-84. PubMed ID: 12765683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calsequestrin and the calcium release channel of skeletal and cardiac muscle.
    Beard NA; Laver DR; Dulhunty AF
    Prog Biophys Mol Biol; 2004 May; 85(1):33-69. PubMed ID: 15050380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of calsequestrin, triadin, and junctin in conferring cardiac ryanodine receptor responsiveness to luminal calcium.
    Györke I; Hester N; Jones LR; Györke S
    Biophys J; 2004 Apr; 86(4):2121-8. PubMed ID: 15041652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ca2+ stores regulate ryanodine receptor Ca2+ release channels via luminal and cytosolic Ca2+ sites.
    Laver DR
    Clin Exp Pharmacol Physiol; 2007 Sep; 34(9):889-96. PubMed ID: 17645636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dysfunction of store-operated calcium channel in muscle cells lacking mg29.
    Pan Z; Yang D; Nagaraj RY; Nosek TA; Nishi M; Takeshima H; Cheng H; Ma J
    Nat Cell Biol; 2002 May; 4(5):379-83. PubMed ID: 11988740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The sarcoplasmic reticulum Ca2+ store arrangement in vascular smooth muscle.
    Rainbow RD; Macmillan D; McCarron JG
    Cell Calcium; 2009; 46(5-6):313-22. PubMed ID: 19836074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A calcium-induced calcium release mechanism mediated by calsequestrin.
    Lee YS; Keener JP
    J Theor Biol; 2008 Aug; 253(4):668-79. PubMed ID: 18538346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Junctional membrane structure and store operated calcium entry in muscle cells.
    Ma J; Pan Z
    Front Biosci; 2003 Jan; 8():d242-55. PubMed ID: 12456355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calsequestrin: more than 'only' a luminal Ca2+ buffer inside the sarcoplasmic reticulum.
    Szegedi C; Sárközi S; Herzog A; Jóna I; Varsányi M
    Biochem J; 1999 Jan; 337 ( Pt 1)(Pt 1):19-22. PubMed ID: 9854019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane topology and membrane retention of the ryanodine receptor calcium release channel.
    Ma J; Hayek SM; Bhat MB
    Cell Biochem Biophys; 2004; 40(2):207-24. PubMed ID: 15054223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calsequestrin mediates changes in spontaneous calcium release profiles.
    Tania N; Keener JP
    J Theor Biol; 2010 Aug; 265(3):359-76. PubMed ID: 20648970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A retrograde signal from calsequestrin for the regulation of store-operated Ca2+ entry in skeletal muscle.
    Shin DW; Pan Z; Kim EK; Lee JM; Bhat MB; Parness J; Kim DH; Ma J
    J Biol Chem; 2003 Jan; 278(5):3286-92. PubMed ID: 12419813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of muscle ryanodine receptor calcium release channels by proteins in the sarcoplasmic reticulum lumen.
    Beard NA; Wei L; Dulhunty AF
    Clin Exp Pharmacol Physiol; 2009 Mar; 36(3):340-5. PubMed ID: 19278523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ryanodine receptor luminal Ca2+ regulation: swapping calsequestrin and channel isoforms.
    Qin J; Valle G; Nani A; Chen H; Ramos-Franco J; Nori A; Volpe P; Fill M
    Biophys J; 2009 Oct; 97(7):1961-70. PubMed ID: 19804727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The conformation of calsequestrin determines its ability to regulate skeletal ryanodine receptors.
    Wei L; Varsányi M; Dulhunty AF; Beard NA
    Biophys J; 2006 Aug; 91(4):1288-301. PubMed ID: 16698782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel mechanism of tandem activation of ryanodine receptors by cytosolic and SR luminal Ca
    Maxwell JT; Blatter LA
    J Physiol; 2017 Jun; 595(12):3835-3845. PubMed ID: 28028837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sarco-Endoplasmic Reticulum Calcium Release Model Based on Changes in the Luminal Calcium Content.
    Guerrero-Hernández A; Sánchez-Vázquez VH; Martínez-Martínez E; Sandoval-Vázquez L; Perez-Rosas NC; Lopez-Farias R; Dagnino-Acosta A
    Adv Exp Med Biol; 2020; 1131():337-370. PubMed ID: 31646517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorylation of skeletal muscle calsequestrin enhances its Ca2+ binding capacity and promotes its association with junctin.
    Beard NA; Wei L; Cheung SN; Kimura T; Varsányi M; Dulhunty AF
    Cell Calcium; 2008 Oct; 44(4):363-73. PubMed ID: 19230141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Massive alterations of sarcoplasmic reticulum free calcium in skeletal muscle fibers lacking calsequestrin revealed by a genetically encoded probe.
    Canato M; Scorzeto M; Giacomello M; Protasi F; Reggiani C; Stienen GJ
    Proc Natl Acad Sci U S A; 2010 Dec; 107(51):22326-31. PubMed ID: 21135222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional importance of polymerization and localization of calsequestrin in C. elegans.
    Cho JH; Ko KM; Singaruvelu G; Lee W; Kang GB; Rho SH; Park BJ; Yu JR; Kagawa H; Eom SH; Kim DH; Ahnn J
    J Cell Sci; 2007 May; 120(Pt 9):1551-8. PubMed ID: 17405817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.