BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 12765767)

  • 1. Mechanics and structure of titin oligomers explored with atomic force microscopy.
    Kellermayer MS; Bustamante C; Granzier HL
    Biochim Biophys Acta; 2003 Jun; 1604(2):105-14. PubMed ID: 12765767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Titin elasticity and mechanism of passive force development in rat cardiac myocytes probed by thin-filament extraction.
    Granzier H; Kellermayer M; Helmes M; Trombitás K
    Biophys J; 1997 Oct; 73(4):2043-53. PubMed ID: 9336199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonuniform elasticity of titin in cardiac myocytes: a study using immunoelectron microscopy and cellular mechanics.
    Granzier H; Helmes M; Trombitás K
    Biophys J; 1996 Jan; 70(1):430-42. PubMed ID: 8770219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cardiac titin: molecular basis of elasticity and cellular contribution to elastic and viscous stiffness components in myocardium.
    Linke WA; Fernandez JM
    J Muscle Res Cell Motil; 2002; 23(5-6):483-97. PubMed ID: 12785099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanically driven contour-length adjustment in rat cardiac titin's unique N2B sequence: titin is an adjustable spring.
    Helmes M; Trombitás K; Centner T; Kellermayer M; Labeit S; Linke WA; Granzier H
    Circ Res; 1999 Jun; 84(11):1339-52. PubMed ID: 10364572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical properties of titin isoforms.
    Granzier H; Helmes M; Cazorla O; McNabb M; Labeit D; Wu Y; Yamasaki R; Redkar A; Kellermayer M; Labeit S; Trombitás K
    Adv Exp Med Biol; 2000; 481():283-300; discussion 300-4. PubMed ID: 10987079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical fatigue in repetitively stretched single molecules of titin.
    Kellermayer MS; Smith SB; Bustamante C; Granzier HL
    Biophys J; 2001 Feb; 80(2):852-63. PubMed ID: 11159452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical manipulation of single titin molecules with laser tweezers.
    Kellermayer MS; Smith S; Bustamante C; Granzier HL
    Adv Exp Med Biol; 2000; 481():111-26; discussion 127-8. PubMed ID: 10987069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mechanical stability of immunoglobulin and fibronectin III domains in the muscle protein titin measured by atomic force microscopy.
    Rief M; Gautel M; Schemmel A; Gaub HE
    Biophys J; 1998 Dec; 75(6):3008-14. PubMed ID: 9826620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pulling single molecules of titin by AFM--recent advances and physiological implications.
    Linke WA; Grützner A
    Pflugers Arch; 2008 Apr; 456(1):101-15. PubMed ID: 18058125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extensibility in the titin molecule and its relation to muscle elasticity.
    Tskhovrebova L; Trinick J
    Adv Exp Med Biol; 2000; 481():163-73; discussion 174-8. PubMed ID: 10987072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence that the tandem Ig domains near the end of the muscle thick filament form an inelastic part of the I-band titin.
    Bennett PM; Hodkin TE; Hawkins C
    J Struct Biol; 1997 Oct; 120(1):93-104. PubMed ID: 9356297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterizing titin's I-band Ig domain region as an entropic spring.
    Linke WA; Stockmeier MR; Ivemeyer M; Hosser H; Mundel P
    J Cell Sci; 1998 Jun; 111 ( Pt 11)():1567-74. PubMed ID: 9580564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Are titin properties reflected in single myofibrils?
    Herzog JA; Leonard TR; Jinha A; Herzog W
    J Biomech; 2012 Jul; 45(11):1893-9. PubMed ID: 22677335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unfolding of titin domains explains the viscoelastic behavior of skeletal myofibrils.
    Minajeva A; Kulke M; Fernandez JM; Linke WA
    Biophys J; 2001 Mar; 80(3):1442-51. PubMed ID: 11222304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reversible unfolding of individual titin immunoglobulin domains by AFM.
    Rief M; Gautel M; Oesterhelt F; Fernandez JM; Gaub HE
    Science; 1997 May; 276(5315):1109-12. PubMed ID: 9148804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reverse engineering of the giant muscle protein titin.
    Li H; Linke WA; Oberhauser AF; Carrion-Vazquez M; Kerkvliet JG; Lu H; Marszalek PE; Fernandez JM
    Nature; 2002 Aug; 418(6901):998-1002. PubMed ID: 12198551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Titin as a modular spring: emerging mechanisms for elasticity control by titin in cardiac physiology and pathophysiology.
    Granzier H; Labeit D; Wu Y; Labeit S
    J Muscle Res Cell Motil; 2002; 23(5-6):457-71. PubMed ID: 12785097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling AFM-induced PEVK extension and the reversible unfolding of Ig/FNIII domains in single and multiple titin molecules.
    Zhang B; Evans JS
    Biophys J; 2001 Feb; 80(2):597-605. PubMed ID: 11159428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extensibility of isoforms of cardiac titin: variation in contour length of molecular subsegments provides a basis for cellular passive stiffness diversity.
    Trombitás K; Redkar A; Centner T; Wu Y; Labeit S; Granzier H
    Biophys J; 2000 Dec; 79(6):3226-34. PubMed ID: 11106626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.