BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 12765767)

  • 21. Stretching molecular springs: elasticity of titin filaments in vertebrate striated muscle.
    Linke WA
    Histol Histopathol; 2000 Jul; 15(3):799-811. PubMed ID: 10963124
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stretching and visualizing titin molecules: combining structure, dynamics and mechanics.
    Kellermayer MS; Grama L
    J Muscle Res Cell Motil; 2002; 23(5-6):499-511. PubMed ID: 12785100
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Restoring force development by titin/connectin and assessment of Ig domain unfolding.
    Preetha N; Yiming W; Helmes M; Norio F; Siegfried L; Granzier H
    J Muscle Res Cell Motil; 2005; 26(6-8):307-17. PubMed ID: 16470334
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evidence for the oligomeric state of 'elastic' titin in muscle sarcomeres.
    Houmeida A; Baron A; Keen J; Khan GN; Knight PJ; Stafford WF; Thirumurugan K; Thompson B; Tskhovrebova L; Trinick J
    J Mol Biol; 2008 Dec; 384(2):299-312. PubMed ID: 18824175
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Viscoelasticity of the sarcomere matrix of skeletal muscles. The titin-myosin composite filament is a dual-stage molecular spring.
    Wang K; McCarter R; Wright J; Beverly J; Ramirez-Mitchell R
    Biophys J; 1993 Apr; 64(4):1161-77. PubMed ID: 8494977
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nature of PEVK-titin elasticity in skeletal muscle.
    Linke WA; Ivemeyer M; Mundel P; Stockmeier MR; Kolmerer B
    Proc Natl Acad Sci U S A; 1998 Jul; 95(14):8052-7. PubMed ID: 9653138
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Titin elasticity in the context of the sarcomere: force and extensibility measurements on single myofibrils.
    Linke WA
    Adv Exp Med Biol; 2000; 481():179-202; discussion 203-6. PubMed ID: 10987073
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Folding-unfolding transitions in single titin molecules characterized with laser tweezers.
    Kellermayer MS; Smith SB; Granzier HL; Bustamante C
    Science; 1997 May; 276(5315):1112-6. PubMed ID: 9148805
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Can the passive elasticity of muscle be explained directly from the mechanics of individual titin molecules?
    Tskhovrebova L; Houmeida A; Trinick J
    J Muscle Res Cell Motil; 2005; 26(6-8):285-9. PubMed ID: 16465473
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The mechanically active domain of titin in cardiac muscle.
    Trombitás K; Jin JP; Granzier H
    Circ Res; 1995 Oct; 77(4):856-61. PubMed ID: 7554133
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Titin-thin filament interaction and potential role in muscle function.
    Jin JP
    Adv Exp Med Biol; 2000; 481():319-33; discussion 334-5. PubMed ID: 10987081
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Passive force generation and titin isoforms in mammalian skeletal muscle.
    Horowits R
    Biophys J; 1992 Feb; 61(2):392-8. PubMed ID: 1547327
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Elasticity and unfolding of single molecules of the giant muscle protein titin.
    Tskhovrebova L; Trinick J; Sleep JA; Simmons RM
    Nature; 1997 May; 387(6630):308-12. PubMed ID: 9153398
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular basis of passive stress relaxation in human soleus fibers: assessment of the role of immunoglobulin-like domain unfolding.
    Trombitás K; Wu Y; McNabb M; Greaser M; Kellermayer MS; Labeit S; Granzier H
    Biophys J; 2003 Nov; 85(5):3142-53. PubMed ID: 14581214
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Complete unfolding of the titin molecule under external force.
    Kellermayer MS; Smith SB; Bustamante C; Granzier HL
    J Struct Biol; 1998; 122(1-2):197-205. PubMed ID: 9724621
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The elasticity of individual titin PEVK exons measured by single molecule atomic force microscopy.
    Sarkar A; Caamano S; Fernandez JM
    J Biol Chem; 2005 Feb; 280(8):6261-4. PubMed ID: 15632200
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulation of skeletal muscle stiffness and elasticity by titin isoforms: a test of the segmental extension model of resting tension.
    Wang K; McCarter R; Wright J; Beverly J; Ramirez-Mitchell R
    Proc Natl Acad Sci U S A; 1991 Aug; 88(16):7101-5. PubMed ID: 1714586
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Roles of titin in the structure and elasticity of the sarcomere.
    Tskhovrebova L; Trinick J
    J Biomed Biotechnol; 2010; 2010():612482. PubMed ID: 20625501
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Single molecule measurements of titin elasticity.
    Wang K; Forbes JG; Jin AJ
    Prog Biophys Mol Biol; 2001; 77(1):1-44. PubMed ID: 11473785
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Low-force transitions in single titin molecules reflect a memory of contractile history.
    Mártonfalvi Z; Bianco P; Linari M; Caremani M; Nagy A; Lombardi V; Kellermayer M
    J Cell Sci; 2014 Feb; 127(Pt 4):858-70. PubMed ID: 24357719
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.