BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 12765786)

  • 1. Carbohydrate-lectin interactions assessed by surface plasmon resonance.
    Duverger E; Frison N; Roche AC; Monsigny M
    Biochimie; 2003; 85(1-2):167-79. PubMed ID: 12765786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbohydrate-lectin interactions assayed by SPR.
    Duverger E; Lamerant-Fayel N; Frison N; Monsigny M
    Methods Mol Biol; 2010; 627():157-78. PubMed ID: 20217620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the carbohydrate binding specificity and kinetic parameters of lectins by using surface plasmon resonance.
    Haseley SR; Talaga P; Kamerling JP; Vliegenthart JF
    Anal Biochem; 1999 Oct; 274(2):203-10. PubMed ID: 10527517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic measurement of the interaction between an oligosaccharide and lectins by a biosensor based on surface plasmon resonance.
    Shinohara Y; Kim F; Shimizu M; Goto M; Tosu M; Hasegawa Y
    Eur J Biochem; 1994 Jul; 223(1):189-94. PubMed ID: 7518391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SPR studies of carbohydrate-lectin interactions as useful tool for screening on lectin sources.
    Vornholt W; Hartmann M; Keusgen M
    Biosens Bioelectron; 2007 Jun; 22(12):2983-8. PubMed ID: 17261364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sugar-lectin interactions: sugar clusters, lectin multivalency and avidity.
    Monsigny M; Mayer R; Roche AC
    Carbohydr Lett; 2000; 4(1):35-52. PubMed ID: 11469336
    [No Abstract]   [Full Text] [Related]  

  • 7. SPR and ITC determination of the kinetics and the thermodynamics of bivalent versus monovalent sugar ligand-lectin interactions.
    Murthy BN; Sinha S; Surolia A; Indi SS; Jayaraman N
    Glycoconj J; 2008 May; 25(4):313-21. PubMed ID: 17955363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immobilized glycosylated Fmoc-amino acid for SPR: comparative studies of lectin-binding to linear or biantennary diLacNAc structures.
    Nakamura K; Sakagami H; Asanuma-Date K; Nagasawa N; Nakahara Y; Akiyama H; Ogawa H
    Carbohydr Res; 2013 Dec; 382():77-85. PubMed ID: 24211369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Affinity analysis of lectin interaction with immobilized C- and O- gylcosides studied by surface plasmon resonance assay.
    Nahálková J; Svitel J; Gemeiner P; Danielsson B; Pribulová B; Petrus L
    J Biochem Biophys Methods; 2002 Jun; 52(1):11-8. PubMed ID: 12121750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative studies on lectin-carbohydrate interactions in low and high density homo- and heteroglycoclusters.
    Gómez-García M; Benito JM; Gutiérrez-Gallego R; Maestre A; Mellet CO; Fernández JM; Blanco JL
    Org Biomol Chem; 2010 Apr; 8(8):1849-60. PubMed ID: 20449489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multivalent gold glycoclusters: high affinity molecular recognition by bacterial lectin PA-IL.
    Reynolds M; Marradi M; Imberty A; Penadés S; Pérez S
    Chemistry; 2012 Apr; 18(14):4264-73. PubMed ID: 22362615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface plasmon resonance as a tool to characterize lectin-carbohydrate interactions.
    Shinohara Y; Furukawa J
    Methods Mol Biol; 2014; 1200():185-205. PubMed ID: 25117236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the carbohydrate binding specificity of the mushroom Pleurotus ostreatus lectin by surface plasmon resonance.
    Kobayashi Y; Nakamura H; Sekiguchi T; Takanami R; Murata T; Usui T; Kawagishi H
    Anal Biochem; 2005 Jan; 336(1):87-93. PubMed ID: 15582562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of Multivalent Protein Binding on Surfaces by Glycopolymer Brush Chemistry.
    Yu K; Creagh AL; Haynes CA; Kizhakkedathu JN
    Methods Mol Biol; 2016; 1367():183-93. PubMed ID: 26537474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of interaction between lectin and carbohydrate by surface plasmon resonance.
    Satoh A; Matsumoto I
    Anal Biochem; 1999 Nov; 275(2):268-70. PubMed ID: 10552918
    [No Abstract]   [Full Text] [Related]  

  • 16. Interfering with the sugar code: design and synthesis of oligosaccharide mimics.
    Bernardi A; Cheshev P
    Chemistry; 2008; 14(25):7434-41. PubMed ID: 18613175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Conjugates of cyclooligosaccharide scaffolds and carbohydrate ligands: methods of synthesis and interaction with lectins].
    Titov DV; Gening ML; Tsvetkov IuE; Nifant'ev NE
    Bioorg Khim; 2013; 39(5):509-46. PubMed ID: 25702410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. QCM sensing of multivalent interactions between lectins and well-defined glycosylated nanoplatforms.
    Abellán-Flos M; Timmer BJJ; Altun S; Aastrup T; Vincent SP; Ramström O
    Biosens Bioelectron; 2019 Aug; 139():111328. PubMed ID: 31136921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lectin interactions on surface-grafted glycostructures: influence of the spatial distribution of carbohydrates on the binding kinetics and rupture forces.
    Yu K; Creagh AL; Haynes CA; Kizhakkedathu JN
    Anal Chem; 2013 Aug; 85(16):7786-93. PubMed ID: 23931124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monitoring lectin interactions with carbohydrates.
    de Bentzmann S; Varrot A; Imberty A
    Methods Mol Biol; 2014; 1149():403-14. PubMed ID: 24818922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.