These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
301 related articles for article (PubMed ID: 12768432)
61. Cloning and disruption of a phenylalanine ammonia-lyase gene from Ustilago maydis. Kim SH; Virmani D; Wake K; MacDonald K; Kronstad JW; Ellis BE Curr Genet; 2001 Aug; 40(1):40-8. PubMed ID: 11570515 [TBL] [Abstract][Full Text] [Related]
62. Deletion of the Ustilago maydis ortholog of the Aspergillus sporulation regulator medA affects mating and virulence through pheromone response. Chacko N; Gold S Fungal Genet Biol; 2012 Jun; 49(6):426-32. PubMed ID: 22537792 [TBL] [Abstract][Full Text] [Related]
63. [Parasitic strategy and regulation mechanism of Ustilago maydis - A review]. Li Z; Yan L; Yan Z Wei Sheng Wu Xue Bao; 2016 Sep; 56(9):1385-97. PubMed ID: 29738207 [TBL] [Abstract][Full Text] [Related]
64. Experimental approaches to investigate effector translocation into host cells in the Ustilago maydis/maize pathosystem. Tanaka S; Djamei A; Presti LL; Schipper K; Winterberg S; Amati S; Becker D; Büchner H; Kumlehn J; Reissmann S; Kahmann R Eur J Cell Biol; 2015; 94(7-9):349-58. PubMed ID: 26118724 [TBL] [Abstract][Full Text] [Related]
65. Maize susceptibility to Ustilago maydis is influenced by genetic and chemical perturbation of carbohydrate allocation. Kretschmer M; Croll D; Kronstad JW Mol Plant Pathol; 2017 Dec; 18(9):1222-1237. PubMed ID: 27564861 [TBL] [Abstract][Full Text] [Related]
66. Hxt1, a monosaccharide transporter and sensor required for virulence of the maize pathogen Ustilago maydis. Schuler D; Wahl R; Wippel K; Vranes M; Münsterkötter M; Sauer N; Kämper J New Phytol; 2015 May; 206(3):1086-1100. PubMed ID: 25678342 [TBL] [Abstract][Full Text] [Related]
67. Maize requires arogenate dehydratase 2 for resistance to Ustilago maydis and plant development. Ren RC; Kong LG; Zheng GM; Zhao YJ; Jiang X; Wu JW; Liu C; Chu J; Ding XH; Zhang XS; Wang GF; Zhao XY Plant Physiol; 2024 May; 195(2):1642-1659. PubMed ID: 38431524 [TBL] [Abstract][Full Text] [Related]
68. An Ustilago maydis gene involved in H2O2 detoxification is required for virulence. Molina L; Kahmann R Plant Cell; 2007 Jul; 19(7):2293-309. PubMed ID: 17616735 [TBL] [Abstract][Full Text] [Related]
69. Two linked genes encoding a secreted effector and a membrane protein are essential for Ustilago maydis-induced tumour formation. Doehlemann G; Reissmann S; Assmann D; Fleckenstein M; Kahmann R Mol Microbiol; 2011 Aug; 81(3):751-66. PubMed ID: 21692877 [TBL] [Abstract][Full Text] [Related]
71. Isolation of an Ustilago maydis gene encoding 3-hydroxy-3-methylglutaryl-coenzyme A reductase and expression of a C-terminal-truncated form in Escherichia coli. Croxen R; Goosey MW; Keon JP; Hargreaves JA Microbiology (Reading); 1994 Sep; 140 ( Pt 9)():2363-70. PubMed ID: 7952187 [TBL] [Abstract][Full Text] [Related]
72. The Ustilago maydis regulatory subunit of a cAMP-dependent protein kinase is required for gall formation in maize. Gold SE; Brogdon SM; Mayorga ME; Kronstad JW Plant Cell; 1997 Sep; 9(9):1585-94. PubMed ID: 9338961 [TBL] [Abstract][Full Text] [Related]
73. Chitosan and Chitin Deacetylase Activity Are Necessary for Development and Virulence of Ustilago maydis. Rizzi YS; Happel P; Lenz S; Urs MJ; Bonin M; Cord-Landwehr S; Singh R; Moerschbacher BM; Kahmann R mBio; 2021 Mar; 12(2):. PubMed ID: 33653886 [TBL] [Abstract][Full Text] [Related]
74. Ustilago maydis phosphodiesterases play a role in the dimorphic switch and in pathogenicity. Agarwal C; Aulakh KB; Edelen K; Cooper M; Wallen RM; Adams S; Schultz DJ; Perlin MH Microbiology (Reading); 2013 May; 159(Pt 5):857-868. PubMed ID: 23475947 [TBL] [Abstract][Full Text] [Related]
75. Phytohormone Involvement in the Ustilago maydis- Zea mays Pathosystem: Relationships between Abscisic Acid and Cytokinin Levels and Strain Virulence in Infected Cob Tissue. Morrison EN; Emery RJ; Saville BJ PLoS One; 2015; 10(6):e0130945. PubMed ID: 26107181 [TBL] [Abstract][Full Text] [Related]
76. Conserved and Distinct Functions of the “Stunted” (StuA)-Homolog Ust1 During Cell Differentiation in the Corn Smut Fungus Ustilago maydis. Baeza-Montañez L; Gold SE; Espeso EA; García-Pedrajas MD Mol Plant Microbe Interact; 2015 Jan; 28(1):86-102. PubMed ID: 25208341 [TBL] [Abstract][Full Text] [Related]
77. sid1, a gene initiating siderophore biosynthesis in Ustilago maydis: molecular characterization, regulation by iron, and role in phytopathogenicity. Mei B; Budde AD; Leong SA Proc Natl Acad Sci U S A; 1993 Feb; 90(3):903-7. PubMed ID: 8430103 [TBL] [Abstract][Full Text] [Related]
78. Progress in pathogenesis research of Ustilago maydis, and the metabolites involved along with their biosynthesis. Yu C; Qi J; Han H; Wang P; Liu C Mol Plant Pathol; 2023 May; 24(5):495-509. PubMed ID: 36808861 [TBL] [Abstract][Full Text] [Related]
79. Dual function of a secreted fungalysin metalloprotease in Ustilago maydis. Ökmen B; Kemmerich B; Hilbig D; Wemhöner R; Aschenbroich J; Perrar A; Huesgen PF; Schipper K; Doehlemann G New Phytol; 2018 Oct; 220(1):249-261. PubMed ID: 29916208 [TBL] [Abstract][Full Text] [Related]
80. Polar growth in the infectious hyphae of the phytopathogen ustilago maydis depends on a virulence-specific cyclin. Flor-Parra I; Castillo-Lluva S; Pérez-Martín J Plant Cell; 2007 Oct; 19(10):3280-96. PubMed ID: 17921314 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]