BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 12768627)

  • 41. Expression of poly(A)-binding protein is upregulated during recovery from heat shock in HeLa cells.
    Ma S; Bhattacharjee RB; Bag J
    FEBS J; 2009 Jan; 276(2):552-70. PubMed ID: 19087191
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Coordinated and selective recruitment of eIF4E and eIF4G factors for potyvirus infection in Arabidopsis thaliana.
    Nicaise V; Gallois JL; Chafiai F; Allen LM; Schurdi-Levraud V; Browning KS; Candresse T; Caranta C; Le Gall O; German-Retana S
    FEBS Lett; 2007 Mar; 581(5):1041-6. PubMed ID: 17316629
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cap-independent translation of maize Hsp101.
    Dinkova TD; Zepeda H; Martínez-Salas E; Martínez LM; Nieto-Sotelo J; de Jiménez ES
    Plant J; 2005 Mar; 41(5):722-31. PubMed ID: 15703059
    [TBL] [Abstract][Full Text] [Related]  

  • 44. eIF4G is required for the pioneer round of translation in mammalian cells.
    Lejeune F; Ranganathan AC; Maquat LE
    Nat Struct Mol Biol; 2004 Oct; 11(10):992-1000. PubMed ID: 15361857
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A novel synthetic mammalian promoter derived from an internal ribosome entry site.
    Hartenbach S; Fussenegger M
    Biotechnol Bioeng; 2006 Nov; 95(4):547-59. PubMed ID: 16924671
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Regulation of cap-dependent translation initiation in the early stage porcine parthenotes.
    Susor A; Jelínková L; Karabínová P; Torner H; Tomek W; Kovárová H; Kubelka M
    Mol Reprod Dev; 2008 Dec; 75(12):1716-25. PubMed ID: 18386287
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Leishmania infantum LeIF protein is an ATP-dependent RNA helicase and an eIF4A-like factor that inhibits translation in yeast.
    Barhoumi M; Tanner NK; Banroques J; Linder P; Guizani I
    FEBS J; 2006 Nov; 273(22):5086-100. PubMed ID: 17087726
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The leader region of Laminin B1 mRNA confers cap-independent translation.
    Petz M; Kozina D; Huber H; Siwiec T; Seipelt J; Sommergruber W; Mikulits W
    Nucleic Acids Res; 2007; 35(8):2473-82. PubMed ID: 17395640
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Amantadine as a regulator of internal ribosome entry site.
    Chen YJ; Zeng SJ; Hsu JT; Horng JT; Yang HM; Shih SR; Chu YT; Wu TY
    Acta Pharmacol Sin; 2008 Nov; 29(11):1327-33. PubMed ID: 18954527
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A cross-kingdom internal ribosome entry site reveals a simplified mode of internal ribosome entry.
    Terenin IM; Dmitriev SE; Andreev DE; Royall E; Belsham GJ; Roberts LO; Shatsky IN
    Mol Cell Biol; 2005 Sep; 25(17):7879-88. PubMed ID: 16107731
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Compartmentalisation and localisation of the translation initiation factor (eIF) 4F complex in normally growing fibroblasts.
    Willett M; Flint SA; Morley SJ; Pain VM
    Exp Cell Res; 2006 Sep; 312(15):2942-53. PubMed ID: 16822502
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Interaction of the eIF4G initiation factor with the aphthovirus IRES is essential for internal translation initiation in vivo.
    López de Quinto S; Martínez-Salas E
    RNA; 2000 Oct; 6(10):1380-92. PubMed ID: 11073214
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Chaperone hsp27 inhibits translation during heat shock by binding eIF4G and facilitating dissociation of cap-initiation complexes.
    Cuesta R; Laroia G; Schneider RJ
    Genes Dev; 2000 Jun; 14(12):1460-70. PubMed ID: 10859165
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Novel CNBP- and La-based translation control systems for mammalian cells.
    Schlatter S; Fussenegger M
    Biotechnol Bioeng; 2003 Jan; 81(1):1-12. PubMed ID: 12432575
    [TBL] [Abstract][Full Text] [Related]  

  • 55. HIV-1 protease cleaves eukaryotic initiation factor 4G and inhibits cap-dependent translation.
    Ventoso I; Blanco R; Perales C; Carrasco L
    Proc Natl Acad Sci U S A; 2001 Nov; 98(23):12966-71. PubMed ID: 11606767
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mapping of functional domains in eukaryotic protein synthesis initiation factor 4G (eIF4G) with picornaviral proteases. Implications for cap-dependent and cap-independent translational initiation.
    Lamphear BJ; Kirchweger R; Skern T; Rhoads RE
    J Biol Chem; 1995 Sep; 270(37):21975-83. PubMed ID: 7665619
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Two related trypanosomatid eIF4G homologues have functional differences compatible with distinct roles during translation initiation.
    Moura DM; Reis CR; Xavier CC; da Costa Lima TD; Lima RP; Carrington M; de Melo Neto OP
    RNA Biol; 2015; 12(3):305-19. PubMed ID: 25826663
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A novel mechanism of eukaryotic translation initiation that is neither m7G-cap-, nor IRES-dependent.
    Terenin IM; Andreev DE; Dmitriev SE; Shatsky IN
    Nucleic Acids Res; 2013 Feb; 41(3):1807-16. PubMed ID: 23268449
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Recruitment of host translation initiation factor eIF4G by the Vaccinia Virus ssDNA-binding protein I3.
    Zaborowska I; Kellner K; Henry M; Meleady P; Walsh D
    Virology; 2012 Mar; 425(1):11-22. PubMed ID: 22280895
    [TBL] [Abstract][Full Text] [Related]  

  • 60. An RNA G-quadruplex is essential for cap-independent translation initiation in human VEGF IRES.
    Morris MJ; Negishi Y; Pazsint C; Schonhoft JD; Basu S
    J Am Chem Soc; 2010 Dec; 132(50):17831-9. PubMed ID: 21105704
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.