BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 12769291)

  • 1. Tandemly repeated DNA sequences and centromeric chromosomal regions of Arabidopsis species.
    Heslop-Harrison JS; Brandes A; Schwarzacher T
    Chromosome Res; 2003; 11(3):241-53. PubMed ID: 12769291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The genetic and epigenetic landscape of the
    Naish M; Alonge M; Wlodzimierz P; Tock AJ; Abramson BW; Schmücker A; Mandáková T; Jamge B; Lambing C; Kuo P; Yelina N; Hartwick N; Colt K; Smith LM; Ton J; Kakutani T; Martienssen RA; Schneeberger K; Lysak MA; Berger F; Bousios A; Michael TP; Schatz MC; Henderson IR
    Science; 2021 Nov; 374(6569):eabi7489. PubMed ID: 34762468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The rapidly evolving field of plant centromeres.
    Hall AE; Keith KC; Hall SE; Copenhaver GP; Preuss D
    Curr Opin Plant Biol; 2004 Apr; 7(2):108-14. PubMed ID: 15003208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plant centromere organization: a dynamic structure with conserved functions.
    Ma J; Wing RA; Bennetzen JL; Jackson SA
    Trends Genet; 2007 Mar; 23(3):134-9. PubMed ID: 17275131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Centromeres and kinetochores of Brassicaceae.
    Lermontova I; Sandmann M; Demidov D
    Chromosome Res; 2014 Jun; 22(2):135-52. PubMed ID: 24801345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation of centromeric-tandem repetitive DNA sequences by chromatin affinity purification using a HaloTag7-fused centromere-specific histone H3 in tobacco.
    Nagaki K; Shibata F; Kanatani A; Kashihara K; Murata M
    Plant Cell Rep; 2012 Apr; 31(4):771-9. PubMed ID: 22147136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Centromeric repetitive sequences in Arabidopsis thaliana.
    Murata M; Ogura Y; Motoyoshi F
    Jpn J Genet; 1994 Aug; 69(4):361-70. PubMed ID: 7545957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organization and evolution of highly repeated satellite DNA sequences in plant chromosomes.
    Sharma S; Raina SN
    Cytogenet Genome Res; 2005; 109(1-3):15-26. PubMed ID: 15753554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ecotype-specific and chromosome-specific expansion of variant centromeric satellites in Arabidopsis thaliana.
    Ito H; Miura A; Takashima K; Kakutani T
    Mol Genet Genomics; 2007 Jan; 277(1):23-30. PubMed ID: 17033808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. De novo generation of plant centromeres at tandem repeats.
    Teo CH; Lermontova I; Houben A; Mette MF; Schubert I
    Chromosoma; 2013 Jun; 122(3):233-41. PubMed ID: 23525657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The structure of an endogenous Drosophila centromere reveals the prevalence of tandemly repeated sequences able to form i-motifs.
    Garavís M; Méndez-Lago M; Gabelica V; Whitehead SL; González C; Villasante A
    Sci Rep; 2015 Aug; 5():13307. PubMed ID: 26289671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Advances in research of the structure and function of plant centromeres].
    She CW; Song YC
    Yi Chuan; 2006 Dec; 28(12):1597-606. PubMed ID: 17138549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-scale computational analysis of DNA curvature and repeats in Arabidopsis and rice uncovers plant-specific genomic properties.
    Masoudi-Nejad A; Movahedi S; Jáuregui R
    BMC Genomics; 2011 May; 12():214. PubMed ID: 21548945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon.
    Cheng Z; Dong F; Langdon T; Ouyang S; Buell CR; Gu M; Blattner FR; Jiang J
    Plant Cell; 2002 Aug; 14(8):1691-704. PubMed ID: 12172016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The formation and evolution of centromeric satellite repeats in Saccharum species.
    Huang Y; Ding W; Zhang M; Han J; Jing Y; Yao W; Hasterok R; Wang Z; Wang K
    Plant J; 2021 May; 106(3):616-629. PubMed ID: 33547688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Whole-genome fractionation rapidly purifies DNA from centromeric regions.
    Luo S; Hall AE; Hall SE; Preuss D
    Nat Methods; 2004 Oct; 1(1):67-71. PubMed ID: 15782155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional centromeres in Astragalus sinicus include a compact centromere-specific histone H3 and a 20-bp tandem repeat.
    Tek AL; Kashihara K; Murata M; Nagaki K
    Chromosome Res; 2011 Nov; 19(8):969-78. PubMed ID: 22065151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Satellite DNAs between selfishness and functionality: structure, genomics and evolution of tandem repeats in centromeric (hetero)chromatin.
    Plohl M; Luchetti A; Mestrović N; Mantovani B
    Gene; 2008 Feb; 409(1-2):72-82. PubMed ID: 18182173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plant centromeres: genetics, epigenetics and evolution.
    Oliveira LC; Torres GA
    Mol Biol Rep; 2018 Oct; 45(5):1491-1497. PubMed ID: 30117088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the centromere and peri-centromere retrotransposons in Brassica rapa and their distribution in related Brassica species.
    Lim KB; Yang TJ; Hwang YJ; Kim JS; Park JY; Kwon SJ; Kim J; Choi BS; Lim MH; Jin M; Kim HI; de Jong H; Bancroft I; Lim Y; Park BS
    Plant J; 2007 Jan; 49(2):173-83. PubMed ID: 17156411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.