These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 12769458)

  • 1. Genetic and plastic responses of a northern mammal to climate change.
    Réale D; McAdam AG; Boutin S; Berteaux D
    Proc Biol Sci; 2003 Mar; 270(1515):591-6. PubMed ID: 12769458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phenological shifts in North American red squirrels: disentangling the roles of phenotypic plasticity and microevolution.
    Lane JE; McAdam AG; McFarlane SE; Williams CT; Humphries MM; Coltman DW; Gorrell JC; Boutin S
    J Evol Biol; 2018 Jun; 31(6):810-821. PubMed ID: 29518280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of selection and evolution in changing parturition date in a red deer population.
    Bonnet T; Morrissey MB; Morris A; Morris S; Clutton-Brock TH; Pemberton JM; Kruuk LEB
    PLoS Biol; 2019 Nov; 17(11):e3000493. PubMed ID: 31689300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Demographic consequences of increased winter births in a large aseasonally breeding mammal (Bos taurus) in response to climate change.
    Burthe S; Butler A; Searle KR; Hall SJ; Thackeray SJ; Wanless S
    J Anim Ecol; 2011 Nov; 80(6):1134-44. PubMed ID: 21668894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selection and evolutionary potential of spring arrival phenology in males and females of a migratory songbird.
    Tarka M; Hansson B; Hasselquist D
    J Evol Biol; 2015 May; 28(5):1024-38. PubMed ID: 25847825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenotypic plasticity drives phenological changes in a Mediterranean blue tit population.
    Biquet J; Bonamour S; de Villemereuil P; de Franceschi C; Teplitsky C
    J Evol Biol; 2022 Feb; 35(2):347-359. PubMed ID: 34669221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The interaction between personality, offspring fitness and food abundance in North American red squirrels.
    Boon AK; Réale D; Boutin S
    Ecol Lett; 2007 Nov; 10(11):1094-104. PubMed ID: 17877738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sand lizard (Lacerta agilis) phenology in a warming world.
    Ljungström G; Wapstra E; Olsson M
    BMC Evol Biol; 2015 Oct; 15():206. PubMed ID: 26446705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lifetime selection on heritable life-history traits in a natural population of red squirrels.
    Réale D; Berteaux D; McAdam AG; Boutin S
    Evolution; 2003 Oct; 57(10):2416-23. PubMed ID: 14628929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexibility of timing of avian migration to climate change masked by environmental constraints en route.
    Both C
    Curr Biol; 2010 Feb; 20(3):243-8. PubMed ID: 20116248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluctuations in population composition dampen the impact of phenotypic plasticity on trait dynamics in superb fairy-wrens.
    van de Pol M; Osmond HL; Cockburn A
    J Anim Ecol; 2012 Mar; 81(2):411-22. PubMed ID: 21999931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Climate change, breeding date and nestling diet: how temperature differentially affects seasonal changes in pied flycatcher diet depending on habitat variation.
    Burger C; Belskii E; Eeva T; Laaksonen T; Mägi M; Mänd R; Qvarnström A; Slagsvold T; Veen T; Visser ME; Wiebe KL; Wiley C; Wright J; Both C
    J Anim Ecol; 2012 Jul; 81(4):926-36. PubMed ID: 22356622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selection on heritable phenotypic plasticity in a wild bird population.
    Nussey DH; Postma E; Gienapp P; Visser ME
    Science; 2005 Oct; 310(5746):304-6. PubMed ID: 16224020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reproductive timing and reliance on hoarded capital resources by lactating red squirrels.
    Fletcher QE; Landry-Cuerrier M; Boutin S; McAdam AG; Speakman JR; Humphries MM
    Oecologia; 2013 Dec; 173(4):1203-15. PubMed ID: 23820780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adjustment to climate change is constrained by arrival date in a long-distance migrant bird.
    Both C; Visser ME
    Nature; 2001 May; 411(6835):296-8. PubMed ID: 11357129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phenotypic plasticity and adaptive evolution contribute to advancing flowering phenology in response to climate change.
    Anderson JT; Inouye DW; McKinney AM; Colautti RI; Mitchell-Olds T
    Proc Biol Sci; 2012 Sep; 279(1743):3843-52. PubMed ID: 22787021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phenological variation in annual timing of hibernation and breeding in nearby populations of Arctic ground squirrels.
    Sheriff MJ; Kenagy GJ; Richter M; Lee T; Tøien Ø; Kohl F; Buck CL; Barnes BM
    Proc Biol Sci; 2011 Aug; 278(1716):2369-75. PubMed ID: 21177687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptation of reproductive phenology to climate change with ecological feedback via dominance hierarchies.
    Johansson J; Smith HG; Jonzén N
    J Anim Ecol; 2014 Mar; 83(2):440-9. PubMed ID: 24237260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Climate change and evolution: disentangling environmental and genetic responses.
    Gienapp P; Teplitsky C; Alho JS; Mills JA; Merilä J
    Mol Ecol; 2008 Jan; 17(1):167-78. PubMed ID: 18173499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contrasting stress response of male arctic ground squirrels and red squirrels.
    Boonstra R; McColl CJ
    J Exp Zool; 2000 Mar; 286(4):390-404. PubMed ID: 10684562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.