BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 12769684)

  • 1. Established and emerging fluorescence-based assays for G-protein function: heterotrimeric G-protein alpha subunits and regulator of G-protein signaling (RGS) proteins.
    Kimple RJ; Jones MB; Shutes A; Yerxa BR; Siderovski DP; Willard FS
    Comb Chem High Throughput Screen; 2003 Jun; 6(4):399-407. PubMed ID: 12769684
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence-based assays for RGS box function.
    Willard FS; Kimple RJ; Kimple AJ; Johnston CA; Siderovski DP
    Methods Enzymol; 2004; 389():56-71. PubMed ID: 15313559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The GAPs, GEFs, and GDIs of heterotrimeric G-protein alpha subunits.
    Siderovski DP; Willard FS
    Int J Biol Sci; 2005; 1(2):51-66. PubMed ID: 15951850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulators of G-protein signaling and their Gα substrates: promises and challenges in their use as drug discovery targets.
    Kimple AJ; Bosch DE; Giguère PM; Siderovski DP
    Pharmacol Rev; 2011 Sep; 63(3):728-49. PubMed ID: 21737532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assay of RGS protein activity in vitro using purified components.
    Krumins AM; Gilman AG
    Methods Enzymol; 2002; 344():673-85. PubMed ID: 11771419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A direct fluorescence-based assay for RGS domain GTPase accelerating activity.
    Willard FS; Kimple AJ; Johnston CA; Siderovski DP
    Anal Biochem; 2005 May; 340(2):341-51. PubMed ID: 15840508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GTPase-activating proteins for heterotrimeric G proteins: regulators of G protein signaling (RGS) and RGS-like proteins.
    Ross EM; Wilkie TM
    Annu Rev Biochem; 2000; 69():795-827. PubMed ID: 10966476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RGS12 and RGS14 GoLoco motifs are G alpha(i) interaction sites with guanine nucleotide dissociation inhibitor Activity.
    Kimple RJ; De Vries L; Tronchère H; Behe CI; Morris RA; Gist Farquhar M; Siderovski DP
    J Biol Chem; 2001 Aug; 276(31):29275-81. PubMed ID: 11387333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RGS domain: production and uses of recombinant protein.
    Yowe D; Yu K; Wilkie TM; Popov S
    Methods Enzymol; 2002; 344():647-57. PubMed ID: 11771417
    [No Abstract]   [Full Text] [Related]  

  • 10. Measurement of heterotrimeric G-protein and regulators of G-protein signaling interactions by time-resolved fluorescence resonance energy transfer.
    Leifert WR; Bailey K; Cooper TH; Aloia AL; Glatz RV; McMurchie EJ
    Anal Biochem; 2006 Aug; 355(2):201-12. PubMed ID: 16729956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions of the α-subunits of heterotrimeric G-proteins with GPCRs, effectors and RGS proteins: a critical review and analysis of interacting surfaces, conformational shifts, structural diversity and electrostatic potentials.
    Baltoumas FA; Theodoropoulou MC; Hamodrakas SJ
    J Struct Biol; 2013 Jun; 182(3):209-18. PubMed ID: 23523730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of GTP-binding and GTPase activity of heterotrimeric Gα proteins.
    Choudhury SR; Westfall CS; Hackenberg D; Pandey S
    Methods Mol Biol; 2013; 1043():13-20. PubMed ID: 23913031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The RGS proteins add to the diversity of soybean heterotrimeric G-protein signaling.
    Choudhury SR; Westfall CS; Pandey S
    Plant Signal Behav; 2012 Sep; 7(9):1114-7. PubMed ID: 22899066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of the intrinsic arginine finger in heterotrimeric G proteins.
    Mann D; Teuber C; Tennigkeit SA; Schröter G; Gerwert K; Kötting C
    Proc Natl Acad Sci U S A; 2016 Dec; 113(50):E8041-E8050. PubMed ID: 27911799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of a novel C. elegans RGS protein with a C2 domain: evidence for direct association between C2 domain and Galphaq subunit.
    Sato M; Moroi K; Nishiyama M; Zhou J; Usui H; Kasuya Y; Fukuda M; Kohara Y; Komuro I; Kimura S
    Life Sci; 2003 Jul; 73(7):917-32. PubMed ID: 12798417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RGS-7 completes a receptor-independent heterotrimeric G protein cycle to asymmetrically regulate mitotic spindle positioning in C. elegans.
    Hess HA; Röper JC; Grill SW; Koelle MR
    Cell; 2004 Oct; 119(2):209-18. PubMed ID: 15479638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural determinants for GoLoco-induced inhibition of nucleotide release by Galpha subunits.
    Kimple RJ; Kimple ME; Betts L; Sondek J; Siderovski DP
    Nature; 2002 Apr; 416(6883):878-81. PubMed ID: 11976690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-activating G protein α subunits engage seven-transmembrane regulator of G protein signaling (RGS) proteins and a Rho guanine nucleotide exchange factor effector in the amoeba Naegleria fowleri.
    Bosch DE; Jeck WR; Siderovski DP
    J Biol Chem; 2022 Aug; 298(8):102167. PubMed ID: 35738399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RGS3 is a GTPase-activating protein for g(ialpha) and g(qalpha) and a potent inhibitor of signaling by GTPase-deficient forms of g(qalpha) and g(11alpha).
    Scheschonka A; Dessauer CW; Sinnarajah S; Chidiac P; Shi CS; Kehrl JH
    Mol Pharmacol; 2000 Oct; 58(4):719-28. PubMed ID: 10999941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RGS family members: GTPase-activating proteins for heterotrimeric G-protein alpha-subunits.
    Watson N; Linder ME; Druey KM; Kehrl JH; Blumer KJ
    Nature; 1996 Sep; 383(6596):172-5. PubMed ID: 8774882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.