BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 12769846)

  • 1. Contingent phosphorylation/dephosphorylation provides a mechanism of molecular memory in WASP.
    Torres E; Rosen MK
    Mol Cell; 2003 May; 11(5):1215-27. PubMed ID: 12769846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphorylation of the WASP-VCA domain increases its affinity for the Arp2/3 complex and enhances actin polymerization by WASP.
    Cory GO; Cramer R; Blanchoin L; Ridley AJ
    Mol Cell; 2003 May; 11(5):1229-39. PubMed ID: 12769847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The adapter protein CrkII regulates neuronal Wiskott-Aldrich syndrome protein, actin polymerization, and tension development during contractile stimulation of smooth muscle.
    Tang DD; Zhang W; Gunst SJ
    J Biol Chem; 2005 Jun; 280(24):23380-9. PubMed ID: 15834156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The nucleotide switch in Cdc42 modulates coupling between the GTPase-binding and allosteric equilibria of Wiskott-Aldrich syndrome protein.
    Leung DW; Rosen MK
    Proc Natl Acad Sci U S A; 2005 Apr; 102(16):5685-90. PubMed ID: 15821030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein-tyrosine kinase and GTPase signals cooperate to phosphorylate and activate Wiskott-Aldrich syndrome protein (WASP)/neuronal WASP.
    Torres E; Rosen MK
    J Biol Chem; 2006 Feb; 281(6):3513-20. PubMed ID: 16293614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The cell division control protein 42-Src family kinase-neural Wiskott-Aldrich syndrome protein pathway regulates human proplatelet formation.
    Palazzo A; Bluteau O; Messaoudi K; Marangoni F; Chang Y; Souquere S; Pierron G; Lapierre V; Zheng Y; Vainchenker W; Raslova H; Debili N
    J Thromb Haemost; 2016 Dec; 14(12):2524-2535. PubMed ID: 27685868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Erk/Src phosphorylation of cortactin acts as a switch on-switch off mechanism that controls its ability to activate N-WASP.
    Martinez-Quiles N; Ho HY; Kirschner MW; Ramesh N; Geha RS
    Mol Cell Biol; 2004 Jun; 24(12):5269-80. PubMed ID: 15169891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of HSP90 to N-WASP leads to activation and protection from proteasome-dependent degradation.
    Park SJ; Suetsugu S; Takenawa T
    EMBO J; 2005 Apr; 24(8):1557-70. PubMed ID: 15791211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Different WASP family proteins stimulate different Arp2/3 complex-dependent actin-nucleating activities.
    Zalevsky J; Lempert L; Kranitz H; Mullins RD
    Curr Biol; 2001 Dec; 11(24):1903-13. PubMed ID: 11747816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sustained activation of N-WASP through phosphorylation is essential for neurite extension.
    Suetsugu S; Hattori M; Miki H; Tezuka T; Yamamoto T; Mikoshiba K; Takenawa T
    Dev Cell; 2002 Nov; 3(5):645-58. PubMed ID: 12431372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integration of signals to the Arp2/3 complex.
    Weaver AM; Young ME; Lee WL; Cooper JA
    Curr Opin Cell Biol; 2003 Feb; 15(1):23-30. PubMed ID: 12517700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of N-WASP activation by CDC42 and phosphatidylinositol 4, 5-bisphosphate.
    Rohatgi R; Ho HY; Kirschner MW
    J Cell Biol; 2000 Sep; 150(6):1299-310. PubMed ID: 10995436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of the activity of SRC and Abl tyrosine protein kinases by the binding of the Wiskott-Aldrich syndrome protein.
    Schulte RJ; Sefton BM
    Biochemistry; 2003 Aug; 42(31):9424-30. PubMed ID: 12899629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A conserved amphipathic helix in WASP/Scar proteins is essential for activation of Arp2/3 complex.
    Panchal SC; Kaiser DA; Torres E; Pollard TD; Rosen MK
    Nat Struct Biol; 2003 Aug; 10(8):591-8. PubMed ID: 12872157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integration of multiple signals through cooperative regulation of the N-WASP-Arp2/3 complex.
    Prehoda KE; Scott JA; Mullins RD; Lim WA
    Science; 2000 Oct; 290(5492):801-6. PubMed ID: 11052943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wiskott-Aldrich syndrome: a disorder of haematopoietic cytoskeletal regulation.
    Thrasher AJ; Burns S
    Microsc Res Tech; 1999 Oct; 47(2):107-13. PubMed ID: 10523789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autoinhibition and activation mechanisms of the Wiskott-Aldrich syndrome protein.
    Kim AS; Kakalis LT; Abdul-Manan N; Liu GA; Rosen MK
    Nature; 2000 Mar; 404(6774):151-8. PubMed ID: 10724160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global disruption of the WASP autoinhibited structure on Cdc42 binding. Ligand displacement as a novel method for monitoring amide hydrogen exchange.
    Buck M; Xu W; Rosen MK
    Biochemistry; 2001 Nov; 40(47):14115-22. PubMed ID: 11714264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The world according to Arp: regulation of actin nucleation by the Arp2/3 complex.
    Welch MD
    Trends Cell Biol; 1999 Nov; 9(11):423-7. PubMed ID: 10511705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scar1 and the related Wiskott-Aldrich syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex.
    Machesky LM; Insall RH
    Curr Biol; 1998 Dec 17-31; 8(25):1347-56. PubMed ID: 9889097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.