These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 12769944)

  • 1. Interactions between desiccation resistance, host-plant contact and the thermal biology of a leaf-dwelling sub-antarctic caterpillar, Embryonopsis halticella (Lepidoptera: Yponomeutidae).
    Chown SL; Klok CJ
    J Insect Physiol; 1998 Jul; 44(7-8):615-628. PubMed ID: 12769944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inertia in physiological traits: Embryonopsis halticella caterpillars (Yponomeutidae) across the Antarctic Polar Frontal Zone.
    Klok CJ; Chown SL
    J Insect Physiol; 2005 Jan; 51(1):87-97. PubMed ID: 15686650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Critical thermal limits, temperature tolerance and water balance of a sub-Antarctic kelp fly, Paractora dreuxi (Diptera: Helcomyzidae).
    Klok CJ; Chown SL
    J Insect Physiol; 2001 Jan; 47(1):95-109. PubMed ID: 11033171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Desiccation stress at sub-zero temperatures in polar terrestrial arthropods.
    Worland MR; Block W
    J Insect Physiol; 2003 Mar; 49(3):193-203. PubMed ID: 12769994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of summer frost exposures on the cold tolerance strategy of a sub-Antarctic beetle.
    Bale JS; Worland MR; Block W
    J Insect Physiol; 2001 Sep; 47(10):1161-1167. PubMed ID: 12770194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Critical thermal limits, temperature tolerance and water balance of a sub-Antarctic caterpillar, Pringleophaga marioni (Lepidoptera: Tineidae).
    Chown SL; Jaco Klok C
    J Insect Physiol; 1997 Jul; 43(7):685-694. PubMed ID: 12769980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between supercooling point and mortality at low temperatures in Indianmeal moth (Lepidoptera: Pyralidae).
    Carrillo MA; Cannon CA; Wilcke WF; Morey RV; Kaliyan N; Hutchison WD
    J Econ Entomol; 2005 Apr; 98(2):618-25. PubMed ID: 15889756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid responses to high temperature and desiccation but not to low temperature in the freeze tolerant sub-Antarctic caterpillar Pringleophaga marioni (Lepidoptera, Tineidae).
    Sinclair BJ; Chown SL
    J Insect Physiol; 2003 Jan; 49(1):45-52. PubMed ID: 12770015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of acclimation on thermal tolerance, desiccation resistance and metabolic rate in Chirodica chalcoptera (Coleoptera: Chrysomelidae).
    Terblanche JS; Sinclair BJ; Jaco Klok C; McFarlane ML; Chown SL
    J Insect Physiol; 2005 Sep; 51(9):1013-23. PubMed ID: 15955537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental studies of ice nucleation in an Antarctic springtail (Collembola, Isotomidae).
    Block W; Worland MR
    Cryobiology; 2001 May; 42(3):170-81. PubMed ID: 11578116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative assessment of the thermal tolerance of spotted stemborer, Chilo partellus (Lepidoptera: Crambidae) and its larval parasitoid, Cotesia sesamiae (Hymenoptera: Braconidae).
    Mutamiswa R; Chidawanyika F; Nyamukondiwa C
    Insect Sci; 2018 Oct; 25(5):847-860. PubMed ID: 28374539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The overwintering biology of the acorn weevil, Curculio glandium in southwestern Ontario.
    Udaka H; Sinclair BJ
    J Therm Biol; 2014 Aug; 44():103-9. PubMed ID: 25086980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenotypic plasticity of thermal tolerances in five oribatid mite species from sub-Antarctic Marion Island.
    Deere JA; Sinclair BJ; Marshall DJ; Chown SL
    J Insect Physiol; 2006 Jul; 52(7):693-700. PubMed ID: 16750541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low Temperature Tolerance of Culicoides sonorensis (Diptera: Ceratopogonidae) Eggs, Larvae, and Pupae From Temperate and Subtropical Climates.
    McDermott EG; Mayo CE; Mullens BA
    J Med Entomol; 2017 Mar; 54(2):264-274. PubMed ID: 28011723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal survival limits of young and mature larvae of a cold stenothermal chironomid from the Alps (Diamesinae: Pseudodiamesa branickii [Nowicki, 1873]).
    Lencioni V; Bernabò P
    Insect Sci; 2017 Apr; 24(2):314-324. PubMed ID: 26463003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Decrease of supercooling capacity during embryogenesis and larval growth in Coleoptera].
    Vernon P; Vannier G; Luce JM
    C R Acad Sci III; 1997 May; 320(5):359-66. PubMed ID: 9239321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoperiodic and thermal regulation of development and cold hardiness in larvae of the clover leaf weevil, Hypera punctata.
    Watanabe M
    Cryobiology; 2000 Jun; 40(4):294-301. PubMed ID: 10924261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Slow dehydration promotes desiccation and freeze tolerance in the Antarctic midge Belgica antarctica.
    Hayward SA; Rinehart JP; Sandro LH; Lee RE; Denlinger DL
    J Exp Biol; 2007 Mar; 210(Pt 5):836-44. PubMed ID: 17297143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acclimation effects on thermal tolerances of springtails from sub-Antarctic Marion Island: indigenous and invasive species.
    Slabber S; Worland MR; Leinaas HP; Chown SL
    J Insect Physiol; 2007 Feb; 53(2):113-25. PubMed ID: 17222862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surviving the Antarctic winter-Life Stage Cold Tolerance and Ice Entrapment Survival in The Invasive Chironomid Midge
    Bartlett JC; Convey P; Hayward SAL
    Insects; 2020 Feb; 11(3):. PubMed ID: 32111052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.